

#### Lead Inventors:

#### lman Hajirasouliha, Ph.D.

Associate Professor of Physiology and Biophysics, Weill Cornell Medical College

#### Nikica Zaninovic, Ph.D.

Associate Professor of Embryology in Clinical Obstetrics and Gynecology, Weill Cornell Medical College

## Olivier Elemento, Ph.D.

Director of the Englander Institute for Precision Medicine, Weill Cornell Medical College

### Zev Rosenwaks, M.D.

Executive Director, Women's Service Center, Institute for Reproductive Medicine, Weill Cornell Medical College



#### **Business Development Contact:**

Donna J. Rounds

Associate Director, Business Development and Licensing

(646) 962-7044 djr296@cornell.edu

#### Background & Unmet Need

- The success of in vitro fertilization (IVF) is limited by challenges in selecting the most viable embryos
- As women age, the incidence of euploid embryos (normal chromosome number) decreases while that of aneuploids (embryos with chromosomal abnormalities that may cause miscarriages or birth defects) increases
- The current standard methods for embryo selection, morphological quality and morphokinetic analyses, suffer from intra- and inter- observer variability
- A third method, pre-implantation genetic testing for aneuploidies (PGT-A), is less variable but has its own notable limitations, including invasiveness and cost
- Machine-learning approaches for assessment of embryo quality based on morphology have not demonstrated a clear benefit over current methods
- Unmet Need: A non-invasive, reliable, and high throughput method to predict ploidy of candidate embryos prior to implantation in order to increase the success of IVF

#### **Technology Overview**

- The Technology: A machine-learning based method, called STORK-A, to non-invasively predict embryo ploidy status
- Uses time-lapse microscopy images of embryos and clinical information (e.g., maternal age & morphological assessments) as inputs and outputs a probability of euploid vs aneuploid for each embryo
- **PoC Data:** The STORK-A algorithm was trained using a dataset of images and clinical information for >10k embryos with confirmed ploidy status and was then also tested on two independent external datasets
- STORK-A classified embryo ploidy status with accuracies of ~70% for both the training and independent datasets
- IVF transferred embryos that were predicted to be euploid by STORK-A exhibited a livebirth rate of 48%, which is very similar to that of the transferred embryos classified as euploid by PGT-A (49%)

#### Inventors:

Josue Barnes Olivier Elemento Iman Hajirasouliha Jonas Malmsten Zev Rosenwaks Nikica Zaninovic

Patents: PCT Application Filed

#### **Publications:**

<u>Barnes et al.</u> *Lancet Digital Health.* 2023.

Biz Dev Contact: Donna J. Rounds (646) 962-7044 djr296@cornell.edu

Cornell Reference: D-10145

#### **Technology Applications**

- Supplement traditional methods of embryo selection ٠ and prioritization by assigning ploidy predictions to embryos in a high throughput and unbiased manner
- Assist embryologists in determining on which ٠ embryos the more invasive and costly PGT-A should be performed in IVF cases that are complex and/or unlikely to be successful (advanced maternal age, low embryo count, etc.)

#### **Technology Advantages**

- Not subject to observer variability •
- Non-invasive and less expensive than PGT-A •
- ٠ High-throughput and can easily be adopted by fertility clinics for use in the IVF process
- Machine-learning algorithm has ability to improve ٠ accuracy as more image data is accrued
- Accuracy can be further increased by integrating • with spatiotemporal data (video)

| image 1.jpg                                                                       |        | Abnormal/Normal/ Euploid                                                               | image 10.jpg                                                                                |
|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Euploid: 55.10%                                                                   |        | = Euploid: 80.14%<br>= Aneuploid: 19.86%                                               | Euploid: 28.26%     Aneuploid: 71.74%                                                       |
| Euploid: 83.59%     Complex Aneuploid: 16.41%     CxA-Everything: Not Complex Ane | uploid | Euploid: 90.78%     Complex Aneuploid: 9.22%     CxA-Everything: Not Complex Aneuploid | Euploid: 27.96%     Complex Aneuploid: 72.04%     CxA-Everything: Complex Aneuploid: 72.04% |
| Not Complex Aneuploid: 72.97%<br>Complex Aneuploid: 27.03%                        |        | = Not Complex Aneuplaid: 78.89%<br>= Complex Aneuplaid: 21.11%                         | <ul> <li>Not Complex Aneuploid: 29.54%</li> <li>Complex Aneuploid: 70.46%</li> </ul>        |
| Age                                                                               |        | Age                                                                                    | Age                                                                                         |
| select an option<br>Blastocyst Score (BS)                                         | ·      | select an option •                                                                     | 45<br>Biastocyst Score (BS)                                                                 |
| Blastocyst Grade (BG)                                                             | -      | 4 V<br>Blastocyst Grade (BG)                                                           | Blastocyst Grade (BG)                                                                       |
|                                                                                   | - 1    |                                                                                        | Manakabianting                                                                              |

Figure 1: Example STORK-A interface and ploidy predictions for use in clinical settings as a support tool for embryologists.

#### Supporting Data / Figures

#### Iman Hajirasouliha Jonas Malmsten Zev Rosenwaks Nikica Zaninovic Patents: PCT Application Filed **Publications:** Barnes et al. Lancet Digital Health. 2023. **Biz Dev Contact:** Donna J. Rounds (646) 962-7044 djr296@cornell.edu **Cornell Reference:** D-10145

Inventors: Josue Barnes

Olivier Elemento

## **Neill Cornell Medicine**



## Weill Cornell Medicine



## **Weill Cornell Medicine**



# Weill Cornell Medicine