Improving the Efficacy of PARP1 Inhibitors by Targeting the Tumor Stroma

Lead Inventors:

Jorge Moscat-Guillen, Ph.D.
Vice-Chair for Cell and Cancer Pathobiology, Department of Pathology and Laboratory Medicine
Homer T. Hirst III Professor of Oncology in Pathology, Pathology and Laboratory Medicine, Weill Cornell Medical College

Maria Diaz-Meco, Ph.D.
Homer T. Hirst Professor of Oncology in Pathology, Pathology and Laboratory Medicine, Weill Cornell Medical College
Professor of Pathology and Laboratory Medicine, Pathology and Laboratory Medicine, Weill Cornell Medical College

Business Development Contact:
Jeffrey James
Associate Director, Business Development and Licensing
(646) 962-4194
jaj268@cornell.edu
Improving the Efficacy of PARP1 Inhibitors by Targeting the Tumor Stroma

Background & Unmet Need

- Poly (ADP-ribose) polymerase (PARP) inhibitors are a class of cancer drugs which are commonly used to treat BRCA1/2 mutant ovarian and breast cancers.
- However, resistance to PARP1 inhibitors is common, with more than 40% of BRCA1/2 mutant patients not responding to therapy\(^1\).
- The tumor microenvironment is implicated to be a driving factor of tumor progression and treatment resistance, and activation of cancer-associated fibroblasts (CAFs) can affect treatment outcomes.
- P62 is a master regulator of CAF activation, and downregulation of p62 has been shown to promote CAF phenotype in tumor stroma.
- However, the mechanism by which p62 is downregulated in tumors remains unclear.
- **Unmet Need:** Methods of inhibiting the activation of the tumor microenvironment, especially CAFs, for improved therapeutic effect and duration.

Technology Overview

- **The Technology:** Combination therapies to increase the effectiveness of PARP1 inhibitors by inhibiting activation of tumor stroma and CAFs.
- **The Discovery:** PARP1 inhibitors generate a feedback loop that activates CAFs by downregulating master regulator p62.
- Therefore, combination treatment with a PARP1 inhibitor and an inhibitor of stromal activation may revert stroma activation and enhance anti-tumor activity.
- **PoC Data:** Treatment with a stroma-targeted hyaluronidase significantly enhanced olaparib antitumor activity both in vitro and in vivo models of prostate cancer.
- This co-targeting mechanism is applicable in additional cancers such as lung, breast, and endometrium and for combinations of PARP1 and other stromal inhibitors, such as anti-TNFα, IL-6, and JAK molecules.

\(^1\) Li et al., Mol Cancer. 2020.
Improving the Efficacy of PARP1 Inhibitors by Targeting the Tumor Stroma

Technology Applications
- Combination therapy of PARP1 inhibitor with drugs targeting TNFalpha, IL-6, or Janus kinase (JAK)
- Combination therapy of PARP1 inhibitors with other drugs that target the stroma, such as hyaluronan (HA) synthase inhibitors, fibroblast activation protein alpha (FAPα) inhibitors, SMO-inhibitors, CXCL12 antagonists, or DDR2 inhibitors

Technology Advantages
- Combination therapy improves efficacy of PARP1 inhibitor therapy
- May reduce refractory rates of treatment with PARP1 inhibitors

Supporting Data / Figures

Figure 1: Schematic depicting how PARP inhibitors activate CAFs.

Inventors:
- Jorge Moscat-Guillen
- Maria Diaz-Meco
- Juan Linares Rodriguez
- Tania Diaz

Patents:
- PCT Application Filed

Publications:

Biz Dev Contact:
- Jeffrey James
 - (646) 962-4194
 - jaj268@cornell.edu

Cornell Reference:
- D-10168
Improving the Efficacy of PARP1 Inhibitors by Targeting the Tumor Stroma

Figure 2: Left: Subcutaneous xenograft co-implantation in NSG mice of PC3 PCa cells with WPMY-1 cells. Mouse were treated twice a week with Olaparib 40 mg/Kg or Olaparib + Stromal Inhibitor for 2 weeks. **Right:** Stromal activation blockade reduces the tumor supporting effects of Olaparib.

Inventors:
Jorge Moscat-Guillen
Maria Diaz-Meco
Juan Linares Rodriguez
Tania Diaz

Patents:
PCT Application Filed

Publications:

Biz Dev Contact:
Jeffrey James
(646) 962-4194
jaj268@cornell.edu

Cornell Reference:
D-10168