

Multi-Purpose Hyper-Stable Fluorescent Proteins

Lead Inventors:

Benjamin Campbell, Ph.D.

Postdoctoral Scholar, UC San Diego Former Graduate Student, Petsko Lab, Weill Cornell Medical College

Gregory Petsko, D.Phil.

Professor of Neurology, Brigham and Women's Hospital Former Professor of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College

Business Development Contact:

Jamie Brisbois Business Development & Licensing Senior Associate

(646) 962-7049 jamie.brisbois@cornell.edu

Multi-Purpose Hyper-Stable Fluorescent Proteins

Background & Unmet Need

- Fluorescent proteins (FPs) are used for a broad range of biology research applications, including as reporters of gene activity and to visualize proteins in live cells
- Most FPs lack the ability to withstand the adverse conditions in the cell that rapidly denature biological structures, including superfolder GFP
- Modern microscopy techniques such as CLEM and ExM, place even greater demands on FPs due to secondary fixation and staining chemicals such as osmium tetroxide that degrade protein functionality
- Most widely used FPs are susceptible to misfolding due to exposure to higher temperatures for a greater lengths of time and photo bleach quickly
- **Unmet Need:** There is a need for stable FPs that can withstand chaotropic conditions and may be used for various biochemical applications

Technology Overview

- The Technology: Development of extremely stable FPs that withstand chaotropic conditions
- The engineered FPs Hyperfolder YFP (hfYFP) and LSSmGFP successfully survive CLEM sample preparation and ExM techniques
- hfYFP contains no cysteines, is chloride insensitive, and tolerates aldehyde and osmium tetroxide fixation better than common FPs
- The robust nature of hfYFP and LSSmGFP make them ideal FPs for the development of biosensors
- PoC Data: The chemical stability of hfYFP was employed to devise a fluorescence-assisted protein purification strategy, enabling all steps of denaturing affinity chromatography to be visualized using UV or blue light

Inventors: Benjamin Campbell Gregory Petsko

Patents:

Provisional Filed

Publications: Campbell et al. Nature Methods, 2022.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-10194

Multi-Purpose Hyper-Stable Fluorescent Proteins

Technology Applications

- · Fluorescence-assisted protein purification
- Live cell imaging and the development of improved biosensors
- Stable FPs for use with CLEM and ExM techniques

Technology Advantages

- Compatible with osmium tetroxide and aldehyde fixation protocols
- Chloride insensitive
- · Improved acid resistance
- Greater thermodynamic stability and faster refolding than existing FPs

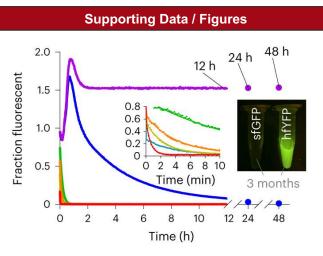


Figure 1: Hyerfolder YFP (hfYFP) is a highly stable fluorescent protein that retains fluorescence for up to three months and is stable in chaotropic conditions.

Inventors: Benjamin Campbell Gregory Petsko Patents: Provisional Filed Publications: Campbell et al. Nature Methods, 2022

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-10194

Weill Cornell Medicine