

Lead Inventors:

Tomer Itkin, Ph.D.

Instructor of Biology in Medicine, Medicine, Weill Cornell Medical College

Shahin Rafii, M.D.

Professor of Medicine, Medicine, Weill Cornell Medical College Arthur B. Belfer Professor in Genetic Medicine Chief, Division of Regenerative Medicine Director, Ansary Stem Cell Institute

Business Development Contact:

Louise Sarup (646) 962-3523

Associate Director, Business Development and Licensing Iss248@cornell.edu

Background & Unmet Need

- Hematopoietic Stem Cell (HSC) transfer and transplantation is a life-saving treatment for many diseases, including cancers and blood disorders
- Human mobilized peripheral blood (mPB) is the most accessible source of Hematopoietic Stem and Progenitor Cells (HSPCs)
- However, there can be insufficient numbers of available transplantable mPB HSPCs following extraction or following ex-vivo genetic therapy
- Moreover, mPB HSPCs are much less proliferative than HSPCs from other sources, such as cord blood, and are less likely to respond to current expansion protocols
- Unmet Need: Activation methods for mPB-derived HSPC robust expansion for successful stem cell transplants resulting with full recovery and reconstitution of blood and immune systems

Technology Overview

- The Technology: A method for ex-vivo activation of HSPC expansion using a modified-RNA to overexpress master transcription regulator Fli-1
- The Discovery: The inventors have discovered a master transcriptional regulator for HSPC activation, Fli-1, which can direct HSPC regenerative expansion from a quiescent non-cycling state
- Fli-1 mediates the crosstalk between HSPCs and their niche and sensitizes them to expansionary regenerative signals
- Treatment with modified RNA to induce overexpression of Fli-1 or downstream activation factors can prime HSPCs for robust expansion
- PoC Data: Human adult mPB HSPCs treated with Fli-1 modified-RNA had increased expansion and superior engraftment capacity in vivo matching that of neonatal cord blood-derived HSPCs

Inventors:

Tomer Itkin Shahin Rafii Lior Zangi

Patents:

Provisional Filed

Publications:

Itkin et al. BioRxiv. 2023. (preprint)

Biz Dev Contact:

Louise Sarup (646) 962-3523 Iss248@cornell.edu

Cornell Reference:

D-10278



Technology Applications

- Ex-vivo, pre-transplantation expansion of adult bone marrow or peripheral blood mobilized HSPCs
- Use for patients with poorly-mobilizing mPBs (e.g. due to genetic factors, diabetes, immunotherapy, chemotherapy)
- Pre-engraftment expansion of HSCs following successful genetic therapy for gene replacement (e.g. beta-thalassemia)

Technology Advantages

- Increased adult HSPC activation and expansion
- Expanded HSCs successfully engraft when transplanted displaying higher numbers of repopulating cells
- Transient expression using Fli-1 modified-RNA technology limits the risk of tumorigenesis or stem cell exhaustion associated with constitutive expression of activation factors

Inventors:

Tomer Itkin

Shahin Rafii

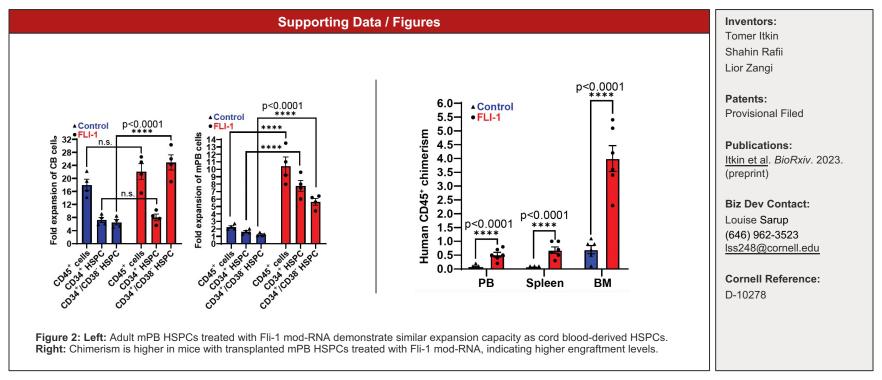
Lior Zangi

Patents:

Provisional Filed

Publications:

Itkin et al. BioRxiv. 2023. (preprint)


Biz Dev Contact:

Louise Sarup (646) 962-3523 Iss248@cornell.edu

Cornell Reference:

D-10278

Weill Cornell Medicine