Repurposing of Reverse Transcriptase Inhibitors to Alleviate TLR5-mediated Inflammation in Cystic Fibrosis

Lead Inventors:

Nicholas Dopkins, Ph.D.
Postdoctoral Associate in Medicine, Weill Cornell Medical College

Douglas Nixon, D.Phil.
The Herbert J. and Ann L. Siegel Distinguished Professor of Medicine, Weill Cornell Medical College
Professor of Immunology in Medicine, Weill Cornell Medical College

Business Development Contact:
Jamie Brisbois
Manager, Business Development and Licensing
(646) 962-7049
jamie.brisbois@cornell.edu
Repurposing of Reverse Transcriptase Inhibitors to Alleviate TLR5-mediated Inflammation in Cystic Fibrosis

Background & Unmet Need

| Cystic fibrosis (CF) is a genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene |
| This hereditary mutation results in inadequate mucus production and compromises bacterial clearance mechanisms, predisposing CF patients to persistent lung infections |
| To fight bacterial infections, cells express TLR5 in response to bacterial motor protein Flagellum (FLA), which causes an innate immune response |
| Unregulated TLR5 activation in response FLA results in pathogenic inflammation |
| Most notably, *P. aeruginosa* can cause a life-threatening infection in the pulmonary tract of CF patients by triggering excess TLR5-mediated inflammation |
| **Unmet Need:** Anti-inflammatory therapy targeting TLR5 to provide therapeutic relief that does not drive immunotoxicity |

Technology Overview

| **The Technology:** Repurposed reverse transcriptase inhibitors (RTis) to alleviate TLR5-driven inflammation in severe cystic fibrosis |
| **The Discovery:** Expression of endogenous retroelements is significantly altered in the peripheral blood mononuclear cells (PBMCs) of CF patients |
| Flagellum (FLA) delivery results in signaling through TLR5, affecting endogenous retroelements (EREs) downstream |
| Reverse transcriptase inhibitors (RTis) selectively inhibit TLR5-induced immunity through expression of TEs |
| **PoC Data:** Four RTis inhibited endogenous reverse transcriptase activity and the resulting TLR5-induced inflammatory response in response to FLA, including inflammatory cytokines TNFa and IL-1B |
| RTis inhibited TNFa production at all concentrations tested (0.025uM-2.5 uM), and IL-1B at the highest concentration (2.5 uM) |

Inventors:
- Nicholas Dopkins
- Douglas Nixon

Patents:
- Provisional Filed

Publications:

Biz Dev Contact:
- Jamie Brisbois
 (646) 962-7049
 jamie.brisbois@cornell.edu

Cornell Reference:
- D-10455
Repurposing of Reverse Transcriptase Inhibitors to Alleviate TLR5-mediated Inflammation in Cystic Fibrosis

Technology Applications

- Repurposed RTis to alleviate inflammation induced by TLR5 activation in Cystic Fibrosis
- RTis may be used as a cotreatment to alleviate TNF-driven inflammation in sepsis with *S. typhi* or *P. aeruginosa*

Technology Advantages

- RTis circumvent increasing antibiotic resistance in *P. aeruginosa* infection
- RTis bypass inter-individual heterogeneity and immunotoxicity
- Safety and dosages for RTis have been established for individuals on PrEP and people living with HIV
- Production of RTis in commercial quantities has been established by several manufacturers

Supporting Data / Figures

Figure 1: RTi delivery inhibits cytokine production in response to acute TLR5 activation.

Inventors:

- Nicholas Dopkins
- Douglas Nixon

Patents:

- Provisional Filed

Publications:

Biz Dev Contact:

- Jamie Brisbois
 - (646) 962-7049
 - jamie.brisbois@cornell.edu

Cornell Reference:

- D-10455