

ROS-Targeted Nanoprobes for Detection and Imaging of Cellular Senescence

Lead Inventors:

Ching-Hsuan Tung, Ph.D.

Professor of Chemistry in Obstetrics and Gynecology, Obstetrics and Gynecology, Weill Cornell Medical College

Professor of Chemistry in Radiology, Radiology, Weill Cornell Medical College

Seung Koo Lee, Ph.D.

Assistant Professor of Cell Biology Research in Radiology, Radiology , Weill Cornell Medical College

Business Development Contact:

Louise Sarup Associate Director, Business Development and Licensing (646) 962-3523 lss248@cornell.edu

ROS-Targeted Nanoprobes for Detection and Imaging of Cellular Senescence

Background & Unmet Need

- Cellular senescence is a state of irreversible cell cycle arrest associated with aging, in which cells stop proliferating
- Senescent cells are drug resistant and may secrete factors such as cytokines into surrounding tissues, causing low-grade inflammation
- Senescence can be caused by cellular stress or damage, including mitochondrial dysfunction, oxidative stress, or DNA damage
- Cells can also become senescent in response to chemotherapy and escape treatment, leading to future tumor recurrence
- Senescence is currently imaged using betagalactosidase (Xgal); however, this label is not senescence-specific and requires cell fixing and long incubation times
- Unmet Need: Improved methods for detection and imaging of senescent cells

Weill Cornell Medicine

Technology Overview

- **The Technology:** A novel fluorogenic nanoprobe for labeling cellular senescence via detection of reactive oxygen species (ROS)
- ROS are known to play a role in progression and maintenance of cell senescence, and ROS levels are directly related to induction of cellular senescence
- The inventors have created a novel nanoprobe, D3, which fluoresces in response to high levels of ROS, thereby labeling senescent cells
- PoC Data: In tumor-bearing mice, D3 accumulated quickly and preferentially in tumors when administered intravenously
- Fluorescent signal from D3 was specifically turned on in senescent tumors, which were induced via treatment of tumor-bearing mice with Palbociclib
- The fluorescence signal from D3 in senescent tumors was 3-fold higher than that of non-senescent tumors

Inventors:

Ching-Hsuan Tung Seung Koo Lee

Patents: Provisional Filed

Publications: Koo Lee et al. Nanoscale. 2023

Biz Dev Contact: Louise Sarup (646) 962-3523 Iss248@cornell.edu

Cornell Reference: D-10582

ROS-Targeted Nanoprobes for Detection and Imaging of Cellular Senescence

Technology Applications

- Imaging nanoprobe to identify senescent tumors following chemotherapy
- Long-term study of disease progression and treatment response for senescence-associated conditions, including aging and fibrosis
- · Real-time imaging of changes in cellular senescence
- Identification and isolation of senescent cells for further research

Technology Advantages

- D3 is remarkably stable in normal physiological conditions
- D3 does not require cells to be fixed or to undergo long incubation times
- Fluorescence intensity of D3 is dependent on ROS production level and corresponds to senescence progression, allowing for real-time imaging

Ching-Hsuan Tung Seung Koo Lee Patents: Provisional Filed Publications: Koo Lee et al. Nanoscale. 2023 **Biz Dev Contact:** Louise Sarup (646) 962-3523 lss248@cornell.edu Cornell Reference: D-10582

Inventors:

Weill Cornell Medicine

