

Lead Inventor:

Ria Goswami, Ph.D.

Assistant Professor of Virology in Pediatrics, Weill Cornell Medical College

Business Development Contact:

Jamie Brisbois
Manager, Business Development and Licensing

(646) 962-7049 jamie.brisbois@cornell.edu

Background & Unmet Need

- There are few antivirals for many viral infections including SARS-CoV-2, influenza, Zika, and CMV
- Limited access to antiretroviral therapy (ART) underlies most new HIV infections and HIV-related deaths
- Barriers to ART and other antivirals include toxicity, side effects, financial constraints, and lack of access to medical care
- There are few broad-spectrum antivirals, which would have the capacity to treat several different viruses
- Unmet Need: Development of novel antiviral strategies to overcome the lack of effective treatments, toxicity of current ARTs, and barriers to medicine for viral infections

Technology Overview

- The Technology: Methods of preventing viral infection, including HIV or CMV, using an aryl hydrocarbon receptor (AhR) agonist or Lachnospriaceae family bacteria
- The Discovery: Lachnospriaceae family members Clostridium immunis (C. immunis) and Ruminococcus gnavus (R. gnavus) metabolize tryptophan into 3-indolelactic acid (3-ILA) via Aromatic Amino Acid Aminotransferase (ArAT)
- 3-ILA and FICZ (an alternative agonist) can prevent HIV infection by binding to aryl hydrocarbon receptor (AhR)
- PoC Data: Administration of C. immunis as a live biotherapeutic suppresses active HIV replication by up to 80-90% in vitro in an ArAT dependent manner
- Administration of FICZ suppresses active HIV replication by up to 50% in vitro

Inventors:

Ria Goswami Neeraj Surana Danting Jiang Chin Yee Tan

Patents:

PCT Application Filed

Publications:

<u>Jiang et al</u>. *bioRxiv*. 2024. (preprint)

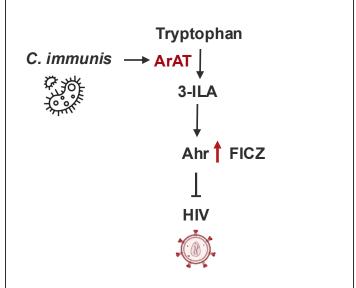
Biz Dev Contact:

Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference:

D-10621

ART: Antiretroviral therapy
AhR: Aryl hydrocarbon receptor
ArAT: Aromatic Amino Acid Aminotransferase


Technology Applications

- Use of small molecule AhR agonists or Lachnospriaceae live biotherapeutics to prevent HIV infection in infants who breast-feed from HIV-positive mothers
- Prevention or treatment of other viral infections including HIV, CMV, and potentially SARS-CoV-2, influenza, Hepatitis C, and Zika

Technology Advantages

- AhR agonists or Lachnospriaceae bacteria are broad-spectrum and can be used for co-infections
- Prolonged colonization of Lachnospriaceae in patients can prevent the need for re-dosing
- AhR agonists or Lachnospriaceae can be used as a monotherapy, rather than in combination like ARTs
- May overcome the toxicity of current ART regimens

Supporting Data / Figures

Figure 1: Schematic of HIV inhibition by *C. immunis. C. immunis* prevents HIV infection by expressing ArAT, which produces, 3-ILA, which activates Ahr.

Inventors:

Ria Goswami Neeraj Surana Danting Jiang Chin Yee Tan

Patents:

PCT Application Filed

Publications:

<u>Jiang et al</u>. *bioRxiv*. 2024. (preprint)

Biz Dev Contact:


Jamie Brisbois (646) 962-7049 iamie.brisbois@cornell.edu

Cornell Reference:

D-10621

ART: Antiretroviral therapy
AhR: Aryl hydrocarbon receptor
ArAT: Aromatic Amino Acid Aminotransferase

ART: Antiretroviral therapy AhR: Aryl hydrocarbon receptor ArAT: Aromatic Amino Acid Aminotransferase

Weill Cornell Medicine