GLICO Platform: Patient-Specific Brain Tumor Organoids for Precision Drug Development

Lead Inventors:

Howard Fine, M.D.
Professor of Neurology, Weill Cornell Medical College
Louis and Gertrude Feil Professor of Medicine, Neurology, Weill Cornell Medical College
Professor of Neurology in Pathology and Laboratory Medicine, Weill Cornell Medical College

Business Development Contact:
Brian Kelly
Director, Technology Licensing
(646) 962-7041
bjk44@cornell.edu
Patient-Specific Brain Tumor Organoids for Precision Drug Development

Background & Unmet Need

- **Glioblastoma (GBM)** remains an incurable cancer with a poor prognosis (median survival ~15 months).
- Despite many efforts, there has been little progress in developing effective treatments for GBM, and its biology remains incompletely understood.
- One barrier to developing new therapies is that current preclinical models of GBM do not reflect the biology or genetics of primary tumors.
- Modeling GBM’s interaction with the tumor microenvironment has also been a challenge and has yet to be successfully replicated.
- **Unmet Need:** Preclinical models of GBM which reflect the biology, genetics, and environment of in-situ tumors and can be used for the development of effective therapies.

Technology Overview

- **The Technology:** A patient-specific platform for modeling GBM and its TME in an organoid culture.
- Tumor-bearing organoids are generated by co-culturing patient-derived glioma stem cells (GSCs) with hESC-derived cerebral organoids.
- The resulting organoids have tumors grown from patient-derived GSCs embedded within them.
- **PoC Data:** GLICO models demonstrate tumor proliferation and infiltration, with 20% of tumor cells staining positive for Ki67.
- GLICO organoids display similar pathology to GBM patients, like spontaneous microtubule formation.
- Response rates to GBM drugs in GLICOs are closer to in vivo rates compared to 2D cultures (24-43% GLICO vs 80-90% cell line), and vary by patient.
- RNA-seq data shows that GLICO transcriptomes are significantly more correlated to those of patient tumors than current GBM models.

Lead Investigator: Howard Fine

Publications:

Biz Dev Contact:
- Brian Kelly
(646) 962 7041
bjk44@cornell.edu
Patient-Specific Brain Tumor Organoids for Precision Drug Development

Technology Applications

- High-throughput screening for glioblastoma drug development and neurotoxicity studies
- Patient-specific screening for personalized medicine
- Identification of new therapeutic targets for GBM
- Understanding of basic GBM biology and interaction with tumor-microenvironment

Technology Advantages

- GLICOs can be maintained in culture for 4 months or longer
- GLICO models reflect the basic biology of GBM better than 2D cultures and traditional organoids
- Organoids and their environments are easy to manipulate and control for experimentation
- GLICO models are easily scalable, making them an ideal candidate for high-throughput screening

Supporting Data / Figures

Figure 1: GLICO models recapitulate patient-derived cell line behavior via differentiated patterns of invasion. More aggressive cell lines (0728, 1206) demonstrate more diffuse patterns of invasion compared to slower-growing cell lines (0517, 0607). GSCs are labeled with GFP.

Lead Investigator: Howard Fine

Publications:

Biz Dev Contact:
Brian Kelly (646) 962-7041
bjk44@cornell.edu
Patient-Specific Brain Tumor Organoids for Precision Drug Development

Supporting Data / Figures

Figure 2: Top Left: Leading edge of infiltrating GSCs into a cerebral organoid. GSCs are labeled with GFP Bottom Left: GLICO transcriptomes have a significantly higher correlation with those of primary tumors than existing GBM models Right: GLICO models demonstrate spontaneous microtubule formation similarly to patient tumors.

Lead Investigator: Howard Fine
Publications:
Biz Dev Contact: Brian Kelly (646) 962 7041 bjk44@cornell.edu