Inhibition of the UFMylation Cascade for Treatment of Alzheimer’s Disease and 4R Tauopathies

Lead Inventors:

Li Gan, Ph.D.
Burton P. and Judith B. Resnick Distinguished Professor in Neurodegenerative Diseases, Brain and Mind Research Institute, Weill Cornell Medical College
Professor of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College

Shiaoching Gong, Ph.D.
Associate Professor of Research in Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College

Business Development Contact:

Jeffrey James
Associate Director, Business Development and Licensing

(646) 962-4194
jaj268@cornell.edu
Inhibition of the UFMylation Cascade for Treatment of Alzheimer’s Disease and 4R Tauopathies

Background & Unmet Need

- Tauopathies are a heterogeneous group of neurodegenerative diseases characterized by accumulation of tau aggregates in the brain.
- Tauopathies include common diseases like Alzheimer’s Disease (AD) and Traumatic Brain Injury (TBI) as well as rare conditions like Frontotemporal lobar degeneration with Tau pathology (FTLD-Tau).
- Tau aggregates in the brain can be formed from the 3R or 4R isoforms of tau, or a combination of both.
- Tauopathies are classified as 3R tauopathies, 4R tauopathies, or 3R/4R tauopathies depending on which isoforms are present.
- The mechanistic underpinnings of tauopathies are poorly understood and there are currently no effective treatments for these diseases.
- **Unmet Need:** Improved understanding of the mechanisms underlying tauopathies and new treatments for these diseases.

Technology Overview

- **The Technology:** Inhibition of the UFMylation cascade for treatment of 4R tauopathies such as AD of FTLD-Tau.
- **The Discovery:** The inventors engineered a novel model for 4R tauopathies using iPSCs expressing 4R-tau carrying the P301S MAPT mutation, an FTLD-tau-related mutation.
- A CRISPRi screen of genes associated with Tau pathobiology identified the UFMylation cascade as top modifier of seeding-induced Tau propagation.
- **PoC Data:** Inhibition of the UFMylation pathway via shRNA knockdown of UBA5 significantly reduces seeding-induced Tau propagation in vitro and in vivo.
- Free UFm, an inverse measure of UFMylation cascade activity, is reduced in tangle-bearing neurons in human AD brains, indicating that the UFMylation pathway promotes Tau pathology in AD.

Inventors:
- Li Gan
- Shiaoching Gong
- Celeste Parra Bravo
- Zeping Zhao

Patents:
- Provisional Filed

Publications:
- Bravo et al., bioRxiv. 2023 (preprint)

Biz Dev Contact:
- Jeffrey James
- (646) 962-4194
- jaj268@cornell.edu

Cornell Reference:
- D-10763
Inhibition of the UFMylation Cascade for Treatment of Alzheimer’s Disease and 4R Tauopathies

Technology Applications

- Treatment of primary tauopathies with 4R tau involvement, such as FTLD-Tau, Progressive supranuclear palsy, Corticobasal degeneration, and Argyrophilic grain disease
- Treatment of secondary tauopathies with 4R tau involvement including AD and chronic traumatic encephalopathy (CTE)

Technology Advantages

- New mechanism of action that isn’t related to amyloid beta for treatment of AD and other tauopathies
- Multiple potential drug development targets within the UFMylation cascade were identified as hits from a CRISPRi screen

Supporting Data / Figures

Figure 1: Left: Representation of UFMylation cascade. Right: shRNA inhibition of UBA5 or UFM1 suppresses seeding-induced Tau propagation (measured by significantly fewer MC1+/GFP+ neurons).

Inventors:
Li Gan
Shiaoching Gong
Celeste Parra Bravo
Zeping Zhao

Patents:
Provisional Filed

Publications:
Bravo et al., bioRxiv. 2023 (preprint)

Biz Dev Contact:
Jeffrey James
(646) 962-4194
jaj268@cornell.edu

Cornell Reference:
D-10763

AD: Alzheimer’s Disease
FTLD-Tau: Frontotemporal lobar degeneration with Tau pathology
Inhibition of the UFMylation Cascade for Treatment of Alzheimer’s Disease and 4R Tauopathies

Supporting Data / Figures

Figure 2: Reduction of UFMylation ameliorates the spread of Tau pathology in vivo. **A, B:** UBA5 shRNA reduces levels of UBA5 in vivo. **C-E:** UBA5 shRNA reduces spread of pathological tau, marked with MC1, following unilateral seeding with Tau fibrils.