

Lead Inventors:

Michael J. Corley, Ph.D.

Assistant Professor of Immunology in Medicine, Medicine, Infectious Diseases, Weill Cornell Medicine

Lishomwa C. Ndhlovu, Ph.D.

Professor of Immunology in Medicine, Medicine, Infectious Diseases, Well Cornell Medicine

Professor of Immunology in Neuroscience, Brain and Mind Research Institute, Weill Cornell Medicine

Business Development Contact:

Jamie Brisbois Manager, Business Development and Licensing (646) 962-7049 jamie.brisbois@cornell.edu

Background & Unmet Need

- A person's biological age differs from their chronological age as it considers not just the passage of time but also factors such as genetics, lifestyle, nutrition, and comorbidities
- Assessing biological age can serve as a more effective diagnostic tool for age-related diseases and as a prognostic tool for health screening
- Epigenetic clocks are a way to determine biological age based on patterns of DNA methylation at specific regions of the human genome
- However, existing epigenetic clocks face challenges related to accuracy, tissue specificity, biological relevance, and capturing diverse aspects of aging
- Retroelements like HERVs and LINE-1 elements are kept silent by DNA methylation, but have been known to influence gene regulation, genomic stability, and disease upon reactivation with age
- **Unmet Need:** Improved biomarkers of biological aging for assessing age-related risk and disease

Weill Cornell Medicine

Technology Overview

- The Technology: Biomarker of biological aging based on the DNA methylation states of HERVs and LINE-1 retroelements
- HERV-Age, LINE-1-Age, and a composite Retroelement-Age clocks were developed using data from >12 K individuals based on the DNA methylation states of HERV and/or LINE-1 elements
- 100% of HERV-Age and 99.9% of LINE-1-Age methylation sites were unique and not part of existing epigenetic clocks*
- **PoC Data:** All three epigenetic clocks were subsequently validated in >2 K samples, with high fidelity to chronological age
- Retroelement-Age was able to measured the impact of therapeutic intervention, demonstrated by (i) a reduction in the biological age of samples from HIV patients undergoing retroviral treatment and (ii) human cortical organoids epigenetically rejuvenated through transient reprogramming

Inventors:

Michael Corley Lishomwa C. Ndhlovu

Patents:

Provisional Filed

Publications:

Ndhlovu et al. *bioRxiv*. 2023 (preprint)

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-10795

*Hannum 2013, Lu Telomere 2019, Teschendorff 2020 EpiTOC2, Belsky 2022 DunedInPace, Harvath 2013, Yang 2016 EpiTOC, Horvath2 2018, Levine 2018 PhenoAge, Lue 2019 Grim Age

Technology Applications

- Predicting the chronological age of humans and panmammalian species
- Measure an individual's biological age more accurately to help predict risk of developing agerelated diseases
- Tool for monitoring the effectiveness of therapeutic interventions, such as antiretroviral and anti-aging treatments

Technology Advantages

- Predicts chronological age with higher accuracy than
 existing models
- Elucidates the association between DNA methylation of retroelements and human aging
- Identifies potential biomarkers for anti-aging strategies

Panels report the sample size (n), the median absolute error (MAE),

Michael Corley Lishomwa C. Ndhlovu Patents: Provisional Filed Publications: Ndhlovu et al. bioRxiv. 2023 (preprint) Biz Dev Contact: Jamie Brisbois

Inventors:

(646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-10795

Weill Cornell Medicine

and Pearson correlation coefficient (r).

Weill Cornell Medicine

