Repurposing Atovaquone for Eliminating HIV-Infected T-Cells

Lead Inventors:

R. Brad Jones
Associate Professor of Microbiology and Immunology, Microbiology and Immunology, Weill Cornell Medical College
Associate Professor of Immunology in Medicine, Medicine, Weill Cornell Medical College

Business Development Contact:
Jamie Brisbois
Manager, Business Development and Licensing
(646) 962-7049
jamie.brisbois@cornell.edu
Repurposing Atovaquone for Eliminating HIV-Infected T-Cells

Background & Unmet Need

- Majority of patients with HIV are well-managed on chronic antiretroviral therapy (ART)
- Although ART suppresses HIV replication, it cannot eliminate integrated HIV within infected T cells, which creates a viral reservoir that triggers viral rebound if treatment stops
- Latency reversal agents (LRAs) intended to reactivate latent HIV have proven ineffective in reducing the viral reservoir despite enabling ART and immune recognition
- Persistence of HIV reservoirs are not only due to latency but also selection for infected cells that are resistant to killing
- **Unmet Need:** Therapy that effectively eliminates persistently infected HIV cells to achieve viral eradication

Technology Overview

- **The Technology:** Repurposing of Atovaquone (ATQ), as a treatment strategy for eliminating HIV viral reservoir
- **The Discovery:** HIV-infected CD4+ T-cells resistant to cytotoxic T-lymphocytes (CTL) have lower expression of gene-sets defining active metabolism and oxidative stress
- These cells have lower levels of intracellular ROS, making them more susceptible to agents that induce oxidative stress (e.g., ROS inducers)
- **PoC Data:** ATQ induces oxidative stress on human CD4+ T cells
- ATQ sensitizes infected CD4+ T-cells from multiple donors to CTL-mediated killing
- Currently evaluating effectiveness of ATQ in mouse models using patient-derive xenografts models of HIV infection

Inventors:
R. Brad Jones
Alberto Herrera

Patents:
Provisional Filed

Publications:
N/A

Biz Dev Contact:
Jamie Brisbois (646) 962-7049
jamie.brisbois@cornell.edu

Cornell Reference:
D-10876
Repurposing Atovaquone for Eliminating HIV-Infected T-Cells

Technology Applications

- Complement existing ART, to clear HIV-positive T cells towards a functional or absolute "cure"
- Alone or in combination with other therapeutic agents, providing a new approach to managing HIV infections

Technology Advantages

- ATQ is an established and well-tolerated drug
- Serve a dual purpose, treating both latent reservoirs and protozoal infections in HIV patients
- Existing manufacturing processes and availability make ATQ a cost-effective option compared to newer, more specialized drugs

Supporting Data / Figures

![Infected CD4+ T-cell survival graph](image)

Figure 1: CD4+ T cells infected with wild-type HIV have a lower survival rate when pre-treated with ATQ (pre-ATO WT Survivor) compared to those that weren’t (DMSO WT Survivor)

Inventors:
- R. Brad Jones
- Alberto Herrera

Patents:
- Provisional Filed

Publications:
- N/A

Biz Dev Contact:
- Jamie Brisbois
 - (646) 962-7049
 - jamie.brisbois@cornell.edu

Cornell Reference:
- D-10876