

**Lead Inventors:** 

Chenxu Zhu, Ph.D.

Assistant Professor of Physiology and Biophysics, Weill Cornell Medical College

Assistant Professor of Computational Cancer Systems Biology and Genomics in Computational Biomedicine, Weill Cornell Medical College

### **Business Development Contact:**

Jamie Brisbois

Manager, Business Development and Licensing

(646) 962-7049

jamie.brisbois@cornell.edu

### **Background & Unmet Need**

- DNA damage is a critical factor in cellular aging and disease, but current technologies can only measure damage across bulk cell populations
- Single-cell approaches have revolutionized our understanding of cell-specific molecular programs but mapping DNA damage at single-cell level has remained challenging
- The stochastic nature of DNA damage formation complicates investigation of its relationship with other cellular functions
- Unmet Need: Methods that can simultaneously map DNA damage and gene expression at single-cell resolution to understand how DNA damage impacts cellular function

### **Technology Overview**

- The Technology: A high-throughput method, termed Paired-Damage-seq, that enables simultaneous mapping of oxidative & ssDNA damage with transcriptomes at single-cell resolution
- The "labeling-by-repair" approach uses DNA repair proteins to remove existing DNA damage sites, followed by incorporation of biotin-modified dUTPs at the damaged sites
- The method combines Paired-Tag RNA sequencing with split-pool barcoding to enable high-throughput analysis of hundreds of thousands to million of cells
- PoC Data: Validated in HeLa cells with strong agreement to existing bulk methods, showing 87% correspondence with RNA-seq and 72% similarity to CLAPS-seq DNA damage profiles
- Successfully applied to mouse brain tissue demonstrating cell-type specific damage patterns
- Demonstrated connection between DNA damage accumulation and epigenetic information loss

### Inventors:

Chenxu Zhu Dongsheng Bai

### Patents:

Provisional Filed

### Publications:

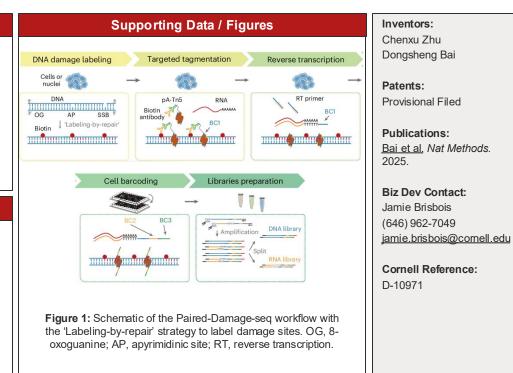
Bai et al. Nat Methods. 2025

### **Biz Dev Contact:**

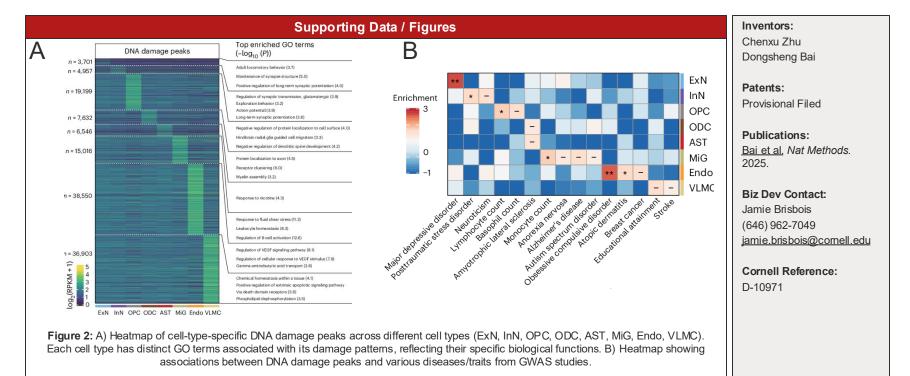
Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

### **Cornell Reference:**

D-10971




### **Technology Applications**


- Screen chemical compounds to identify promising drug candidates
- Identify and validate therapeutic targets to develop cell-specific treatments based on DNA damage patterns
- Facilitate biomarker discovery for diseases associated with DNA damage and repair deficiencies

### **Technology Advantages**

- Simultaneously measures DNA damage and gene expression at single-cell resolution
- High-throughput capability at single-cell resolution
- Seamless integration with existing sequencing workflows and screening platforms



### **Weill Cornell Medicine**





### Weill Cornell Medicine