

Lead Inventors:

Lisa Gfrerer, M.D., Ph.D.

Assistant Professor of Surgery (Plastic Surgery), Surgery, Weill Cornell Medical College

Fei Wang, Ph.D.

Director. Institute of AI for Digital Health, Weill Cornell Medical College Professor of Population Health Sciences, Population Health Sciences , Weill Comell Medical College

Professor of Population Health Sciences in Emergency Medicine, Emergency Medicine (Secondary), Weill Cornell Medical College

Business Development Contact:

Donna J. Rounds (646) 962-7044

Associate Director, Business Development and Licensing djr296@cornell.edu

Background & Unmet Need

- Headache disorders (HD) affect around 40% of the global population, around 3.1 billion people in 2021¹
- A large share of HD patients (>25% of HD patients in the US) also suffer from undiagnosed nerve pain, which often causes their HD
- Accurate identification of such nerve pain remains challenging due to the lack of standardized screening, delaying appropriate treatment and limiting access to care
- While some specialized providers can diagnose nerve pain through patient history and exams, most primary care physicians and general neurologists are not adequately trained to identify nerve pain
- Some HD experts use patient pain drawings to aid diagnosis, but this requires expertise in peripheral nerve anatomy, making it time-intensive, errorprone, and less accessible
- Unmet Need: Standardized screening for nerve pain among HD patients

Technology Overview

- The Technology: Platform for screening patients for nerve pain using a digital 3D model of the head on which patients draw their pain
- The platform leverages Al-based pattern recognition to automatically evaluate pain drawings to diagnose nerve pain and identify patients that are candidates for headache surgery
- A prototype of the platform has been developed and trained on 1,300 3D pain drawings
- PoC Data: The highest performing model, a multilayer perceptron (MLP) model, distinguished nerve pain from other types of head and neck pain with an AUROC of 0.879, precision of 0.943, specificity of 0.611, and sensitivity of 0.640
- Another model, XGBoost, performed exceptionally well in detecting different types of nerve pain such Trigeminal Neuralgia (AUROC: 0.954), occipital nerve pain (AUROC: 0.928), and frontal nerve pain (AUROC: 0.930)

Inventors:

Lisa Gfrerer Fei Wang

Patents:

PCT Application Filed

Publications:

Chartier et al. Plast Reconstr Surg. 2023. Gfrerer et al. Plast Reconstr Surg. 2020.

Biz Dev Contact:

Donna Rounds 646-962-7044 dir296@cornell.edu

Cornell Reference:

D-11038

Technology Applications

- Screen patients in specialist or non-specialist settings for nerve pain in the head and other areas of the body
- Stratify patients to non-surgical versus surgical treatment, such as nerve decompression surgery
- Predict treatment response to surgical interventions
- Differential diagnosis of nerve pain conditions, such as neuroma, thoracic outlet syndrome, sciatica, etc.

Technology Advantages

- Enables fast, in expensive, & non-invasive screening
- Allows less specialized practitioners to assess candidacy for headache surgery
- Provides an intuitive system for patients to communicate their pain
- Early identification of nerve pain can prevent chronic pain and reduce risk of addiction to pain medication, substance abuse, and long-term disability

Supporting Data / Figures

Figure 1: Rendering of mobile screening application, which allows for touch-enabled creation of pain drawings.

Inventors:

Lisa Gfrerer Fei Wang

Patents:

PCT Application Filed

Publications:

Chartier et al. Plast Reconstr Surg. 2023. Gfrerer et al. Plast Reconstr Surg. 2020.

Biz Dev Contact:

Donna Rounds 646-962-7044 dir296@cornell.edu

Cornell Reference:

D-11038

Weill Cornell Medicine