

Lead Inventor:

Samie Jaffrey, M.D., Ph.D.

Greenberg-Starr Professor, Pharmacology, Weill Cornell Medical College

Professor of Pharmacology, Pharmacology , Weill Cornell Medical College

Business Development Contact:

Jamie Brisbois Manager, Business Development and Licensing (646) 962-7049 jamie.brisbois@cornell.edu

Background & Unmet Need

- RNA aptamers are small RNAs capable of folding into complex structures, allowing them to bind to metabolites, proteins, or other molecules and thereby regulate cellular functions
- Various aptamers have been successfully selected against different targets and show promise as a diagnostic, prognostic and therapeutic
- Efficient RNA circularization has led to the development of aptamers resistant to exonucleases, making them highly stable and abundant within cells
- However, their constitutive binding can lead to toxicity
- Allosteric control by theophylline and tetracycline binding aptamers is possible but leads to unwanted biological effects, such as increased cyclic AMP and altered microbiomes and antibiotic resistance
- Unmet Need: Reliable method to control the activity of RNA aptamers in a reversible and tunable manner with minimal off-target effects

Weill Cornell Medicine

Technology Overview

- The Technology: A platform for generating acyclovir-controlled RNA nanodevices that can be used for controlling cell physiology
- The nanodevice incorporates two aptamers: the first aptamer (input) exhibits a conformational change upon binding acyclovir, which stabilizes the second aptamer (output) in a folded conformation that binds to an effector or performs an effector function
- **PoC Data:** Engineered an RNA nanodevice that successfully demonstrated acyclovir-dependent control of Broccoli, a fluorogenic aptamer
- Engineered an RNA nanodevice containing an iron response element (IRE), an aptamer that binds to the major undruggable iron-regulatory proteins (IRPs), enabling tunable repression of free iron levels and thus the inhibition of ferroptosis
- Compared to samples without acyclovir, those with acyclovir exhibited up to a 126% increase in FTH levels and up to a 22% decrease in TfR expression

Inventors: Samie Jaffrey Timo Hagen

Patents: Provisional Filed

Publications: N/A

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-11080


Technology Applications

- A platform for developing RNA-based therapeutics, particularly for controlling iron homeostasis and preventing ferroptosis
- Integrated into existing gene therapy platforms to enhance the control of gene expression
- As a tool in for studying cellular processes and pathway regulations

Technology Advantages

- Reversible and tunable control of aptamer function through external activators, allows for precise modulation and reset of expression
- Activation by specific, non-toxic small molecules like acyclovir ensures targeted action with minimal side effects
- Applicable to various cellular functions including mRNA cleavage, splicing, and polyadenylation

Weill Cornell Medicine

fluorescence over time, which was reversed upon removing acvclovir.

Inventors:
Samie Jaffrey
Timo Hagen
Patents:
Provisional Filed
Publications:
N/A
Biz Dev Contact:
Jamie Brisbois
(646) 962-7049
jamie.brisbois@cornell.edu
Cornell Reference:
D-11080

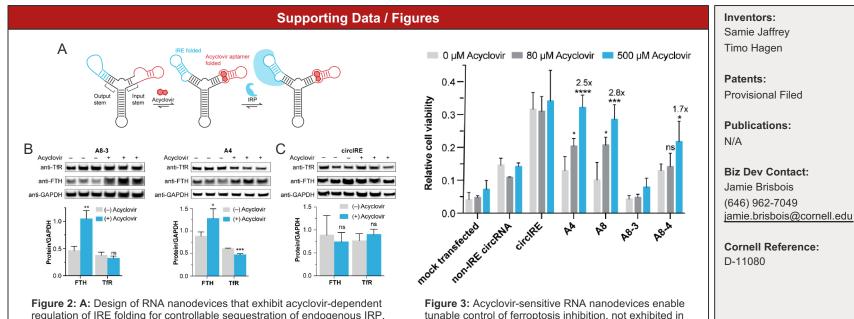


Figure 2: A: Design of RNA nanodevices that exhibit acyclovir-dependent regulation of IRE folding for controllable sequestration of endogenous IRP.
B: RNA nanodevices shows acyclovir-dependent modulation of FTH and TfR expression. C: CircIRE, a constitutively folded IRE, shows no response to acyclovir.

FTH: ferritin TfR: transferrin receptor

control or circIRE.

