

StaBle: Reducing Aliasing Errors in Doppler Ultrasound for High-Velocity Blood Flow Imaging

Lead Inventors:

Jeffrey Ketterling, Ph.D.

Professor of Biomedical Engineering in Radiology, Radiology, Weill Cornell Medical College

Geraldi Wahyulaksana, Ph.D.

Postdoctoral Associate in Radiology, Radiology , Weill Comell Medical College

Business Development Contact:

Donna J. Rounds

(646) 962-7044

Associate Director, Business Development and Licensing

djr296@cornell.edu

StaBle: Reducing Aliasing Artifacts in Doppler Ultrasound for High-Velocity Blood Flow Imaging

Background & Unmet Need

- Echocardiography is an essential diagnostic and research tool to allow non-invasive visualization of cardiac structures and function
- Doppler ultrasound specifically measures blood flow velocity and can be used to visualize and measure complex flow patterns in the heart, aorta, carotid, and even the urethra
- However, this type of blood flow analysis is often impeded by aliasing artifacts, which occur when the speed of blood is higher than the maximum measurable velocity using ultrasound
- This poses a particular challenge in blood flow analysis in small animal models, as aliasing limits are reduced because of high frequencies
- Unmet Need: Improved methods for measuring high velocity blood flow using Doppler ultrasound with fewer aliasing errors for more accurate assessment of cardiac function in humans and animal models, particularly for high-speed plane wave methods

Technology Overview

- The Technology: StaBle (Staggered PRF with douBle Transmission), a method to increase the maximum velocity measurement range of Doppler ultrasound
- This technique combines staggered PRF (Pulse Repetition Frequency) and double transmission to detect true velocities from aliased measurements
- PoC Data: StaBle is able to achieve a 6-12 times higher velocity limit compared to sequential angle transmission techniques
- In a phantom spinning disc experiment, StaBle demonstrated a 9-fold improvement in detecting peak axial velocity over sequential angle transmission techniques
- In vivo, StaBle enabled measurement of an unaliased vector field in the left ventricle of a mouse heart, and consistent measurement of vorticity, kinetic energy, and energy loss

Inventors:

Jeffrey Ketterling Geraldi Wahyulaksana

Patents:

Provisional Filed

Publications:

IEEE-TUFFC – In review April 2025.

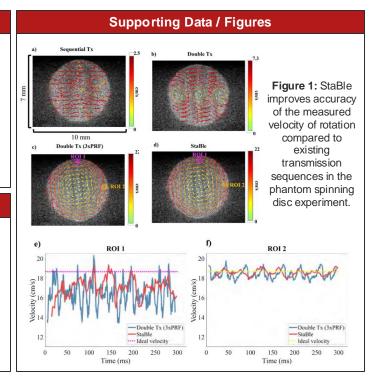
Biz Dev Contact:

Donna Rounds 646-962-7044 dir296@cornell.edu

Cornell Reference:

D-11171

Weill Cornell Medicine


StaBle: Reducing Aliasing Artifacts in Doppler Ultrasound for High-Velocity Blood Flow Imaging

Technology Applications

- Evaluation of blood flow dynamics in the heart, aorta, or carotid artery
- Improved cardiac flow analysis for cardiovascular research in animal models, such as mice, rats, rabbits, and guinea pigs
- Improved diagnosis and monitoring of cardiovascular disease, such as early-stage heart failure, using Doppler ultrasound methods

Technology Advantages

- Maintains high spatial resolution while increasing the maximum velocity measurement range
- Enables use of high-frequency ultrasound for measurement of small structures, like murine hearts, which have previously been challenging to study
- Reduces data acquisition requirements by enabling high-velocity measurements at lower PRF

Inventors:

Jeffrey Ketterling Geraldi Wahyulaksana

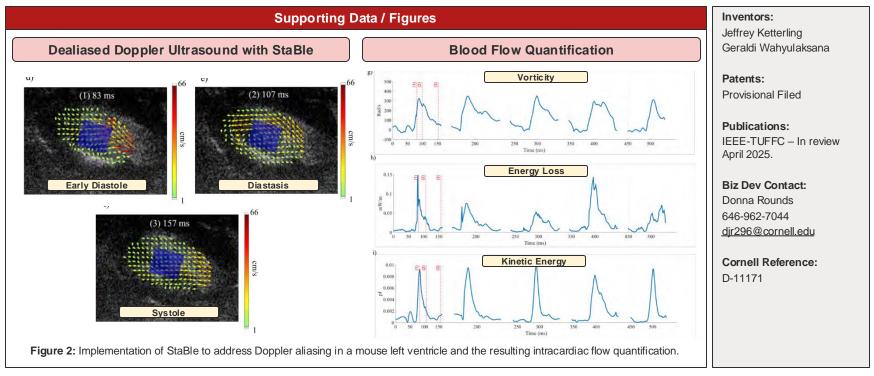
Patents:

Provisional Filed

Publications:

IEEE-TUFFC – In review April 2025.

Biz Dev Contact:


Donna Rounds 646-962-7044 dir296@cornell.edu

Cornell Reference:

D-11171

Weill Cornell Medicine

StaBle: Reducing Aliasing Artifacts in Doppler Ultrasound for High-Velocity Blood Flow Imaging

Weill Cornell Medicine