Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Lead Inventors:

Roger Hartl, M.D.
Hansen-MacDonald Professor of Neurological Surgery, Weill Cornell Medical College

Lawrence Bonassar, Ph.D.
Daljit S. and Elaine Sarkaria Professor in Biomedical Engineering, College of Engineering, Cornell University

Business Development Contact:
Donna J. Rounds
Associate Director, Business Development and Licensing
(646) 962-7044
djr296@cornell.edu
Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

<table>
<thead>
<tr>
<th>Background & Unmet Need</th>
<th>Technology Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Degenerative disc disease (DDD) is a condition in which the intravertebral discs (IVDs) in the spine degrade over time</td>
<td>• The Technology: Tissue-Engineered IVDs (TE-IVDs) combined with a bioresorbable stabilization system for improved treatment of DDD</td>
</tr>
<tr>
<td>• This degradation leads to nerve compression and chronic back pain</td>
<td>• The bioresorbable support structure keeps the implant in place during the healing process but allows for segmental movement after the stabilization system dissolves</td>
</tr>
<tr>
<td>• DDD is widespread, affecting >90% of adults 50 years or older</td>
<td>• PoC Data: In a canine model, the TE-IVD implants engrafted successfully and persisted in the spine for 16 weeks</td>
</tr>
<tr>
<td>• Surgical intervention for severe cases involves removing the entire IVD followed by fusion of the adjacent vertebrae or placement of a mechanical disc prosthesis to preserve motion</td>
<td>• The TE-IVDs were stable and maintained disc height up to 70% of adjacent normal discs</td>
</tr>
<tr>
<td>• However, fusion and disc replacement are associated with increased risk of pseudarthrosis and adjacent segment disease</td>
<td>• The TE-IVD implants did not generate a chronic immune response, supporting the use of allogeneic cells</td>
</tr>
<tr>
<td>• Unmet Need: An intervertebral disc implant that preserves a patient’s spinal movement without the risk of developing complications or comorbidities</td>
<td></td>
</tr>
</tbody>
</table>

Inventors:
Roger Hartl
Lawrence Bonassar
Yu Moriguchi
Gernot Lang
Rodrigo Navarro-Ramirez

Patents:
US Patent 11,504,245
EP Application 3,583,213

Publications:

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-7728
Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Technology Applications
• Treatment of degenerative disc disease in patients with severe back pain that doesn’t respond to noninvasive approaches

Technology Advantages
• Replaces the entirety of the IVD utilizing viable tissues
• Restores disc height and spinal flexibility
• Inclusion of a bioresorbable support system reduces the risk of implant displacement

Supporting Data / Figures

Inventors:
Roger Hartl
Lawrence Bonassar
Yu Moriguchi
Gernot Lang
Rodrigo Navarro-Ramirez

Patents:
US Patent 11,504,245
EP Application 3,583,213

Publications:

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-7728

Figure 1: Quantitative analysis of disc height index and MRI. Compares the TE-IVD to the discectomy condition at different lengths in time. Data demonstrates that the TE-IVD had greater height index, a higher NP Voxel Count, and a higher NP T2 Relaxation Time which indicates the implant was well hydrated within the body.
Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Supporting Data / Figures

Figure 2: X-ray and histology of adjacent motion segment, discectomy, and TE-IVD at 4 and 16 weeks. The TE-IVD implant showed clear vertebral separation and abundant staining with Safranin O, demonstrating proteoglycan-rich tissue with distinct morphological features of nucleus pulposus (NP) and annulus fibrosus (AF).

Inventors:
Roger Hartl
Lawrence Bonassar
Yu Moriguchi
Gernot Lang
Rodrigo Navarro-Ramirez

Patents:
US Patent 11,504,245
EP Application 3,583,213

Publications:

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-7728