Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Lead Inventors:

Roger Hartl, M.D.
Hansen-MacDonald Professor of Neurological Surgery, Weill Cornell Medical College

Lawrence Bonassar, Ph.D.
Daljit S. and Elaine Sarkaria Professor in Biomedical Engineering, College of Engineering, Cornell University

Business Development Contact:
Donna Rounds
Interim Senior Technology Licensing
(646) 962-7044
djr296@cornell.edu
Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Background & Unmet Need
- Degenerative disc disease (DDD) is a condition in which the intravertebral discs (IVDs) in the spine degrade over time
- This degradation leads to nerve compression and chronic back pain
- DDD is widespread, affecting >90% of adults 50 years or older
- Surgical intervention for severe cases involves removing the entire IVD followed by fusion of the adjacent vertebrae or placement of a mechanical disc prosthesis to preserve motion
- However, fusion and disc replacement are associated with increased risk of pseudarthrosis and adjacent segment disease
- **Unmet Need**: An intervertebral disc implant that preserves a patient’s spinal movement without the risk of developing complications or comorbidities

Technology Overview
- **The Technology**: Tissue-Engineered IVDs (TE-IVDs) combined with a bioresorbable stabilization system for improved treatment of DDD
- The bioresorbable support structure keeps the implant in place during the healing process but allows for segmental movement after the stabilization system dissolves
- **PoC Data**: In a canine model, the TE-IVD implants engrafted successfully and persisted in the spine for 16 weeks
- The TE-IVDs were stable and maintained disc height up to 70% of adjacent normal discs
- The TE-IVD implants did not generate a chronic immune response, supporting the use of allogeneic cells

Inventors:
- Roger Hartl
- Lawrence Bonassar
- Yu Moriguchi
- Gernot Lang
- Rodrigo Navarro-Ramirez

Patents:
- US Patent 11,504,245
- EP Application EP3644908

Publications:

Biz Dev Contact:
- Donna Rounds
- (646) 962-7044
- djr296@cornell.edu

Cornell Reference:
- D-7728
Tissue-Engineered Intervertebral Discs for the Treatment of Degenerative Disc Disease

Technology Applications

- Treatment of degenerative disc disease in patients with severe back pain that doesn’t respond to noninvasive approaches

Technology Advantages

- Replaces the entirety of the IVD utilizing viable tissues
- Restores disc height and spinal flexibility
- Inclusion of a bioresorbable support system reduces the risk of implant displacement

Supporting Data / Figures

Figure 1: Quantitative analysis of disc height index and MRI compares the TE-IVD to the discectomy condition at different lengths in time. Data demonstrates that the TE-IVD had greater height index, a higher NP Voxel Count, and a higher NP T2 Relaxation Time which indicates the implant was well hydrated within the body.

Inventors:
Roger Hartl
Lawrence Bonassar
Yu Moriguchi
Gernot Lang
Rodrigo Navarro-Ramirez

Patents:
US Patent 11,504,245
EP Application EP3644908

Publications:

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-7728
Figure 2: X-ray and histology of adjacent motion segment, discectomy, and TE-IVD at 4 and 16 weeks. The TE-IVD implant showed clear vertebral separation and abundant staining with Safranin O, demonstrating proteoglycan-rich tissue with distinct morphological features of nucleus pulposus (NP) and annulus fibrosus (AF).