Novel Methods for 3D Imaging and Quenching Tissue Autofluorescence

Lead Inventors:

Romulo Hurtado, Ph.D.
Assistant Professor of Cell and Developmental Biology
Research in Surgery, Weill Cornell Medical College

Business Development Contact:
Dan-Oscar Antson
Technology Licensing Officer
(646) 962-7042
da429@cornell.edu
Novel Methods for 3D Imaging and Quenching Tissue Autofluorescence

<table>
<thead>
<tr>
<th>Background & Unmet Need</th>
<th>Technology Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Visualizing cellular structures in the global context of intact organs is critical for deciphering organ function</td>
<td>• The Technology: Two complementary techniques to address current imaging limitations of 3D tissue</td>
</tr>
<tr>
<td>• However, imaging intact organs is impacted by the following challenges:</td>
<td>• Atacama Clear: Makes tissue optically transparent, enabling 3D imaging of whole organs</td>
</tr>
<tr>
<td>• Biological tissues are not transparent and scatter light</td>
<td>• Atacama Quench: Eliminates tissue autofluorescence to improve signal-to-noise ratio</td>
</tr>
<tr>
<td>• Biological tissues are naturally autofluorescent</td>
<td>• PoC Data:</td>
</tr>
<tr>
<td>• These challenges limit the depth of imaging accessible by light microscopy techniques, and make it hard to resolve signal from noise during fluorescent imaging</td>
<td>• Atacama Clear: 50% greater signal-to-noise ratio than CUBIC during imaging of 1mm murine heart sections</td>
</tr>
<tr>
<td>• Unmet Need: Methods to enable improved light penetration and reduced autofluorescence of biological tissues</td>
<td>• Atacama Quench: 10x more blood vessel signal compared to TrueBlack during immunostaining of a murine brain section</td>
</tr>
<tr>
<td></td>
<td>• Tissue preparation protocols are easy to follow and do not require the use of toxic solvents</td>
</tr>
</tbody>
</table>

Inventors:
Romulo Hurtado

Patents:
US Application Filed
EP Application Filed
PCT Application Filed

Publications:
N/A

Biz Dev Contact:
Dan-Oscar Antson
(646) 962-7042
da429@cornell.edu

Cornell Reference:
D-8280
Novel Methods for 3D Imaging and Quenching Tissue Autofluorescence

Technology Applications

• Optical clearing of tissues for superior 3D imaging of intact biological tissues
• Elimination of autofluorescence to enable visualization of biological markers in basic science and clinical imaging studies

Technology Advantages

• Atacama Clear does not require use of toxic solvents or dehydration with common alcohols
• Atacama Clear clears tough fibrous tissue and preserves fluorescent reporter protein signals
• Atacama Quench eliminates autofluorescence throughout the fluorescent light spectrum
• Atacama Quench preserves tissue integrity and is compatible with follow-up IF studies

Supporting Data / Figures

Figure 1: A) Atacama Quench kit consists of 3 chemical solutions. B) Use of Atacama Quench to diagnose fibrosis in a human kidney biopsy. Top panel, natural autofluorescence of biopsy. Middle panel, autofluorescence after treatment with Atacama Quench. Bottom panel, staining of biopsy for fibrosis (smooth muscle actin, red).

Inventors:
Romulo Hurtado

Patents:
US Application Filed
EP Application Filed
PCT Application Filed

Publications:
N/A

Biz Dev Contact:
Dan-Oscar Antson
(646) 962-7042
da429@cornell.edu

Cornell Reference:
D-8280
Novel Methods for 3D Imaging and Quenching Tissue Autofluorescence

Supporting Data / Figures

Figure 2: Use of Atacama Clear to optically clear whole organs. Top left panel shows the heart, untreated. Bottom left panel shows the heart after treatment with Atacama Clear. Right panel shows imaging deep inside the heart for cardiac blood vessels.

Figure 3: Atacama Quench preserves 10-fold more blood vessel signal than TrueBlack (Biotium), which abrogated the blood vessel staining.

Figure 4: Atacama Clear sections exhibit approximately 50% greater signal-to-noise ratio than CUBIC.

Inventors: Romulo Hurtado

Patents:
- US Application Filed
- EP Application Filed
- PCT Application Filed

Publications: N/A

Biz Dev Contact: Dan-Oscar Antson (646) 962-7042 da429@cornell.edu

Cornell Reference: D-8280