

Lead Inventor:

Julie Magarian Blander, Ph.D.

Gladys and Roland Harriman Professor of Immunology in Medicine, Weill Cornell Medical College

Business Development Contact:

Brian Kelly Director, Technology Licensing (646) 962-7041 bjk44@cornell.edu

Background & Unmet Need

- Immunity is driven by two types of adaptive immune responses: The cell-mediated immune response (activated T cells) and the humoral immune response (activated B cells and antibodies)
- The generation of adaptive immunity depends not only on exposure to an antigen, but also the context in which the antigen is encountered
- In cancer, the immunosuppressive tumor bed is a formidable barrier against cancer vaccines and immunotherapy like immune checkpoint blockade
- Adjuvants are used in conjunction with an antigen to enhance antigen-specific immune response
- However, traditional aluminum salt and oil-based adjuvants are often ineffective in boosting the immune response to therapeutic cancer vaccines or in immunocompromised individuals
- Unmet Need: Novel adjuvants that induce a strong adaptive immune response for both prophylactic vaccines and cancer immunotherapies

Weill Cornell Medicine

Technology Overview

- The Technology: Use of bacterial needle and rod proteins as adjuvants to activate the innate immune inflammasome pathway
- **The Discovery:** Bacterial needle proteins such as Prgl and Cprl activate the inflammasome, a signaling complex that produces pro-inflammatory cytokines and mediates adaptive immunity
- **PoC Data:** Expression of Needle proteins activated the inflammasome and initiated an inflammatory form of cell death called pyroptosis in tumor cells
- Chimeric antibodies consisting of a single-chain variable fragment fused to a Needle protein, tumor antigen, and/or Flagellin activated the inflammasome and caused human dendritic cell maturation, proinflammatory cytokine production, and tumor antigen MHC-I presentation to T cells
- Expression of Needle proteins in established melanoma tumors in mice led to significant reduction of tumor volume and resolution over time

Julie Magarian Blander Patents:

Inventors:

PCT Application Filed

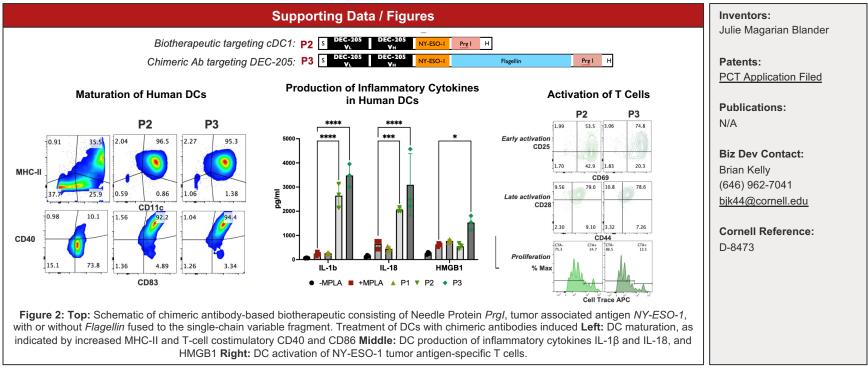
Publications: N/A

Biz Dev Contact: Brian Kelly (646) 962-7041 bjk44@cornell.edu

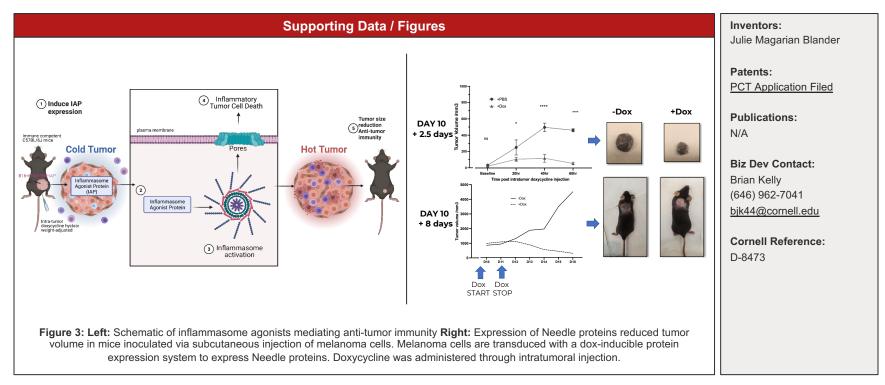
Cornell Reference: D-8473

Technology Applications

- Adjuvants to enhance the host immune response to both prophylactic and therapeutic vaccines
- Cancer therapy via the use of fusion proteins, chimeric target antibodies, or activated dendritic cells to trigger immune response to tumor cells


Technology Advantages

- Protein adjuvants are amenable to multiple delivery systems and to different cell types including tumors
- Protein adjuvants may be delivered in vaccine formulations or as chimeric antibodies *in* or *ex-vivo*
- Adjuvants target inflammasome for stronger immunogenic effect than current adjuvants
- Controlled activation of inflammation by specifically targeting NLRC4 inflammasome


Weill Cornell Medicine

Supporting Data / Figures		
Virus	P 191	
E.coli	+	
Cl. IL-1β		
Cl. Caspase-1		Super
Cl. Caspase-4		Concentrated Supernatants
Cl. Gasdermin D		0.62
Pro-IL-1β	-	
Pro-Caspase-1		
Gasdermin D		WCE
Cl. Gasdermin D Nterm		Ĥ
NLRC4		
β-Actin		
Figure 1: Transduction of human DCs with recombinant lentiviruses expressing Needle and Rod proteins induced inflammasome activation, indicated by cleavage of IL-1β, caspases 1 and 4, and Gasdermin D.		

Inventors: Julie Magarian Blander Patents: PCT Application Filed Publications: N/A **Biz Dev Contact:** Brian Kelly (646) 962-7041 bjk44@cornell.edu Cornell Reference: D-8473

Weill Cornell Medicine

