Novel Anti-Infective Urinary Catheter and Drainage System using Soft Robotic Technology

Lead Inventors:

Jeremy Wiygul, M.D.
Assistant Professor of Clinical Urology, Weill Cornell Medical College

Simon Dunham, Ph.D.
Assistant Professor of Electrical Engineering in Radiology, Weill Cornell Medical College

Bobak Mosadegh, Ph.D.
Associate Professor of Biomedical Engineering in Radiology, Weill Cornell Medical College

Business Development Contact:
Donna J. Rounds
Interim Senior Technology Licensing Officer

(646) 962-7044
djr296@cornell.edu
Novel Anti-Infective Urinary Catheter and Drainage System using Soft Robotic Technology

<table>
<thead>
<tr>
<th>Background & Unmet Need</th>
<th>Technology Overview</th>
</tr>
</thead>
</table>
| - Urinary tract infections (UTIs) are the most common type of hospital acquired infections, with over 250,000 incidences per year
 - The majority (75%) of hospital-acquired UTIs are linked to conventional indwelling urinary catheters
 - The Centers for Disease Control and Prevention estimates that the cost of treating Catheter-associated UTIs (CA-UTIs) is $350 million per year
 - However, new catheter materials and alternative catheter designs have thus far failed to significantly reduce the incidence of CA-UTIs
 - There are ~75 M indwelling Foley catheters utilized annually worldwide, with an estimated global Foley catheter market of ~$1 B in 2018
 - **Unmet Need**: There is a pressing need for innovations in catheter design that reduce the risk of CA-UTIs | - **The Technology**: A novel urinary catheter and drainage system designed to reduce the risk of developing CA-UTIs by using soft robotic actuation to actively open the drainage eyelet without changing the cost of catheter production
 - The revised catheter has a drainage eyelet that resembles a slit, such that it is closed during introduction into the urethra, partially open once in the bladder, and fully open once inflated (as one would do for the retention balloon)
 - This novel design reduces the likelihood of a biofilm being loaded into the eyelet during introduction as is the case with conventional catheters
 - **PoC Data**: In a simulated experiment, the novel catheter significantly reduced contamination (12x less) compared to a standard catheter
 - The novel catheter was also shown to not impair flow rate compared to a standard catheter, and retained its actuation ability after repeated usage |

Inventors:
Jeremy Wiygul
Simon Dunham
Bobak Mosadegh

Patents:
PCT Application Filed

Biz Dev Contact:
Donna J. Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-8534
Novel Anti-Infective Urinary Catheter and Drainage System using Soft Robotic Technology

Technology Applications

• Reduced incidence of CA-UTIs in patients that require an indwelling catheter
• Improved treatment and outcomes for patients suffering from urinary incontinence

Technology Advantages

• Novel catheter design is amenable to production with existing machinery, thus no increased costs
• Soft robotic actuation requires simple inflation, requiring no additional training for nurses compared to use of conventional catheters

Supporting Data / Figures

Figure 1: A. Improved catheter design includes an active drainage eyelet to reduce the risk of biofilm formation during catheter insertion. B. Actuating catheter significantly reduced contamination compared to a standard catheter in a simulated experiment (experimental overview in Figure 2).

Inventors:
Jeremy Wiygul
Simon Dunham
Bobak Mosadegh

Patents:
PCT Application Filed

Biz Dev Contact:
Donna J. Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-8534
Novel Anti-Infective Urinary Catheter and Drainage System using Soft Robotic Technology

Supporting Data / Figures

Figure 2: A. The actuating eyelet (top) and retention balloon (bottom) at various inflation volumes. B. Actuating catheter provided a similar flow rate as a standard catheter even after repeated use. Note that at zero inflation volume, flow still occurs to avoid safety issues. C. The actuating catheter shows reproducible inflation diameters after repeated usage.

Inventors:
Jeremy Wiygul
Simon Dunham
Bobak Mosadegh

Patents:
PCT Application Filed

Biz Dev Contact:
Donna J. Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-8534