

Non-Invasive Delivery of CNS Gene Therapy Using Focused Ultrasound

Lead Inventor:

Michael G. Kaplitt, M.D., Ph.D.

Professor of Neuroscience, Brain and Mind Research Institute

Professor of Neurological Surgery

Non-Invasive Delivery of CNS Gene Therapy Using Focused Ultrasound

Background & Unmet Need

- Gene therapy delivery to the brain is difficult due to the need to cross the blood-brain barrier (BBB)
- Current approaches require the vectors to be introduces through direct injection, which is difficult to monitor and exposes the patient to the risks of invasive surgery
- Use of an osmotic agent such as mannitol enables chemical permeabilization of the BBB but requires systemic administration, precluding targeted delivery
- Administration of MRI-guided focused ultrasound (MRgFUS) has been shown to locally open the BBB, but there is a lack of data demonstrating safe and persistent delivery of therapeutics
- Unmet Need: Non-invasive method for targeted delivery of gene therapy to the brain for the treatment of neurological diseases

Technology Overview

- The Technology: Method for transitory disruption of the BBB and targeted delivery of gene therapy using MRgFUS
- Gene therapy delivery can be further restricted by:
 - Encapsulation in vesicles specifically disrupted by FUS
 - Addition of a tissue-specific microRNA to silence off-target gene expression
 - Sequential vector delivery for selective therapy activation
- PoC Study: Successfully introduced GFP transgene into the brains of live rats, with stable gene expression up to 16 months after treatment
- Gene expression was shown to be limited to target brain regions and did not provoke long-term inflammation

Inventors:

Michael G. Kaplitt Mihaela Stavarache

Patents:

US Application Filed EP Application Filed

Publications:

Stavarache et al. J Neurosurg. 2018.

Biz Dev Contact:

Lukasz Kowalik (646) 962-7052 kowalik@cornell.edu

Cornell Reference:

D-8560

Non-Invasive Delivery of CNS Gene Therapy Using Focused Ultrasound

Technology Applications

- Treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease
- Treatment of other CS diseases including major depression
- Treatment of monogenic CNS diseases via gene replacement therapy

Technology Advantages

- Enables targeting of specific brain regions
- Demonstrated stable gene expression over time
- Increased efficiency and safety compared to current delivery methods

Supporting Data / Figures

0

Figure 1: MRI-guided focused ultrasound facilitates targeted AAV-mediated gene delivery of GFP to the brain of live rats.

Inventors:

Michael G. Kaplitt Mihaela Stavarache

Patents:

US Application Filed EP Application Filed

Publications:

Stavarache et al. J Neurosurg. 2018.

Biz Dev Contact:

Lukasz Kowalik (646) 962-7052 kowalik@cornell.edu

Cornell Reference:

D-8560

Weill Cornell Medicine