

Restricting Dietary Sugars Improves the Treatment of Colorectal and Small Intestine Cancers

Lead Inventors:

Lewis C. Cantley, Ph.D.

Director, Sandra and Edward Meyer Cancer Center Professor of Cancer Biology in Medicine, Weill Cornell Medical College

Marcus D. Goncalves, Ph.D.

Assistant Professor of Medicine, Weill Cornell Medical College Assistant Professor of Biochemistry, Weill Cornell Medical College

Business Development Contact:

Lukasz Kowalik Senior Licensing and Business Development Officer (646) 962-7052 kowalik@cornell.edu

Restricting Dietary Sugars Improves the Treatment of Colorectal and Small Intestine Cancers

Background & Unmet Need

- Colorectal cancer (CRC) is the third most common type of cancer in the world
- A high fructose diet is connected to cancer and obesity, the two largest causes of mortality
- The mechanism of why high-fructose corn syrup (HFCS) leads to worse cancer outcomes was previously unknown
- HFCS is converted to a carcinogen, fructose 1phosphate (F1P), by ketohexokinase (KHK)
- F1P is structurally similar to fructose 1,6bisphosphate (FBP), an inhibitor of PKM2 gene, and promotes hypoxia
- Unmet Need: Improved understanding of the impact of dietary sugars on cancer, to inform dietary recommendations and targeted therapies

Technology Overview

- **The Technology:** Method to reduce or eliminate sugar from diet or administer a treatment targeting the fructose-uptake pathway to inhibit or reduce onset of colon and intestinal cancers
- **The Discovery:** Specific molecules in the fructoseuptake pathway are upregulated in high-fat diets and promote tumor growth and incidence
- **PoC Data:** In mice models, HFCS enhances tumor growth by promoting hypoxic cell survival, as evidenced by the presence of longer intestinal cell villi (Fig. 1)
- Small molecules that target upregulated proteins in the fructose-uptake pathway (HPK, GLUT5, P3K, PKM2) prevent cancerous phenotypes, including longer villi length in intestinal cells and prolonged cell survival that increase adiposity in mice (Fig. 2)
- Making dietary changes to reduce fructose levels or pharmacologically targeting the fructose-uptake pathway may thus improve treatment outcomes

Inventors:

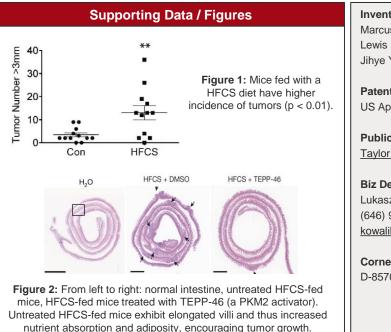
Marcus D. Goncalves Lewis C. Cantley Jihye Yun

Patents: US Application Filed

Publications: Taylor et al. Nature. 2021.

Biz Dev Contact: Lukasz Kowalik (646) 962-7052 <u>kowalik@cornell.edu</u>

Cornell Reference: D-8570


Restricting Dietary Sugars Improves the Treatment of Colorectal and Small Intestine Cancers

Technology Applications

- Restriction of dietary sugars (e.g., sucrose, fructose) ٠ may reduce the risk of oncogenesis in patients at high risk of developing colorectal cancer
- Special meal kits for cancer patients with reduced ٠ amounts of the identified sugars and proteins
- Administering inhibitors of GLUT5, KHK, FASN, PI3, or PKM2 activator to reverse cancer progression in individuals with high-sugar diets

Technology Advantages

- Dietary changes can be implemented immediately ٠ and are a low-cost option
- Drug candidates already exist for several genes in ٠ fructose-uptake pathway: PHGDH, GLUT5, KHK, FASN, PI3 kinase

Treatment with TEPP-46 abolishes the observed phenotype in HFCS-fed mice.

Inventors:

Marcus D. Goncalves Lewis C. Cantley Jihve Yun

Patents: **US** Application Filed

Publications: Taylor et al. Nature, 2021.

Biz Dev Contact: Lukasz Kowalik (646) 962-7052 kowalik@cornell.edu

Cornell Reference: D-8570

Weill Cornell Medicine

Weill Cornell Medicine