Oncobeat:
Methods for Preventing Chemotherapy-Induced Cardiotoxicity

Scientific Co-Founders:

Shuibing Chen, Ph.D.
Kilts Family Associate Professor of Surgery, Weill Cornell Medical College
Associate Professor of Chemical Biology, Weill Cornell Medical College

Todd Evans, Ph.D.
Peter I. Pressman, M.D. Professor in Surgery, Weill Cornell Medical College
Professor of Cell and Developmental Biology in Surgery, Weill Cornell Medical College
Associate Dean for Research

Business Development Contact:
Louise Sarup
Associate Director, Business Development and Licensing
(646) 962-3523 lss248@cornell.edu
Methods for Preventing Chemotherapy-Induced Cardiotoxicity

Background & Unmet Need

- Cardiotoxicity is a major concern for patients receiving chemotherapy, as well as the development of new chemotherapeutic drugs.
- Of the 50% of cancer patients that receive chemotherapy, between 5–25% of survivors develop chemotherapy-induced cardiovascular diseases.
- Moreover, cardiotoxicity is a leading cause of failure for new chemotherapy drug development.
- Chemotherapy-induced toxicity affects multiple cardiac cell types, including both cardiomyocytes and pacemaker cells.
- Current cardiotoxicity screens only evaluate cardiotoxicity to cardiomyocytes, but not pacemaker cells.
- **Unmet Need**: Methods for screening drugs that protect both cardiomyocytes and pacemaker cells from chemo-induced cardiotoxicity.

Technology Overview

- **The Technology**: A human stem cell-based platform to screen for cardioprotective drugs.
- **The Discovery**: The inventors have developed a method of generating and isolating sinoatrial node (SAN) cells, also known as pacemaker cells, from human embryonic stem cells.
- These SAN cells can be used as part of a platform for screening chemotherapeutic drugs for cardiotoxicity.
- **PoC Data**: SAN cells generated using this system demonstrate molecular and electrophysiological characteristics of pacemaker cells.
- A candidate cardioprotective drug, *CardioPro*, has been identified which protects heart cells from doxorubicin-induced cardiotoxicity *in vitro* and *in vivo*.

Inventors:

- Shuibing Chen
- Todd Evans
- Zaniar Ghazizadeh

Patents:

- US Patent Application Filed

Publications:

Biz Dev Contact:

- Louise Sarup
 - (646) 962-3523
 - lss248@cornell.edu

Cornell Reference:

- D-8784, D-8785
Methods for Preventing Chemotherapy-Induced Cardiotoxicity

<table>
<thead>
<tr>
<th>Technology Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screening platform for identifying cardioprotective drugs</td>
</tr>
<tr>
<td>2. Prevention of chemotherapy-induced cardiotoxicity using CardioPro drug candidate</td>
</tr>
<tr>
<td>3. Platform for modeling other cardiac diseases such as cardiomyopathy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Platform integrates both pacemaker and cardiomyocyte cell types, providing a more complete picture of cardiotoxicity than current platforms</td>
</tr>
<tr>
<td>2. Isolation of pacemaker and cardiomyocytes, as well as analysis of cardiotoxicity, is made easier by the development of several reporter lines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supporting Data / Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: Schematic of screening platform for cardioprotective drugs.</td>
</tr>
</tbody>
</table>

Inventors: Shuibing Chen, Todd Evans, Zaniar Ghazizadeh

Patents: US Patent Application Filed

Publications:

Biz Dev Contact: Louise Sarup
(646) 962-3523
lss248@cornell.edu

Cornell Reference: D-8784, D-8785
Methods for Preventing Chemotherapy-Induced Cardiotoxicity

Supporting Data / Figures

Figure 2: Left: Candidate CardioPro prevents cell death in human pacemaker cells in vitro. Right: CardioPro prevents arrhythmia and cell death in the murine heart in vivo.

Inventors:
Shuibing Chen
Todd Evans
Zaniar Ghazizadeh

Patents:
US Patent Application Filed

Publications:

Biz Dev Contact:
Louise Sarup
(646) 962-3523
lss248@cornell.edu

Cornell Reference:
D-8784, D-8785