Low-dose Carbon Monoxide Treatment for Metastatic Cancers

Lead Inventors:

Nancy Du, Ph.D.
Mildred L. and John F. Rasweiler Research Scholar in Cancer Research, Weill Cornell Medical College
Associate Professor of Pathology and Laboratory Medicine, Weill Cornell Medical College

Augustine Choi, M.D.
Stephen and Suzanne Weiss Dean and Provost for Medical Affairs, Weill Cornell Medical College
Professor of Medicine, Weill Cornell Medical College
Professor of Genetic Medicine, Weill Cornell Medical College

Business Development Contact:
Brian Kelly
Director, Technology Licensing
(646) 962-7041
bjk44@cornell.edu
Low-Dose Carbon Monoxide for Treatment of Metastatic Cancers

Background & Unmet Need
- Cancer metastasis is responsible for 90% of cancer-related deaths
- Patients with localized cancer often have undetectable tumor cells in distant sites, which could later form metastatic tumors
- Therapies to prevent or treat metastatic tumors are limited, and conventional anti-proliferative chemotherapies often do not decrease metastasis
- **Unmet Need**: Methods to treat, prevent, alleviate cancer metastasis

Technology Overview
- **The Technology**: A method to treat or prevent metastatic cancer via administration of low-dose carbon monoxide separately or in combination with additional therapeutic agents
- By perturbing cancer cell metabolism, low-dose carbon monoxide (CO) treatment decreases metastatic potential in multiple cancer types including breast, colon, and prostate
- CO decreases cancer cell migration *in vitro* without affecting activity of non-malignant cells
- CO can be administered by gas inhalation, nanoparticle delivery, or other carbon-monoxide releasing molecules (CORMs)
- **PoC Data**: Pre-clinical testing via inhalation of low-dose CO reduced metastatic tumor burden completely in pancreatic ductal adenocarcinoma (PDAC) 8988T-bearing mice (p < 0.05) and by 50% in triple-negative breast cancer (TNBC) MBA-MB-231-bearing mice (p < 0.0001)

Inventors:
Nancy Du
Augustine Choi

Patents:
US Application Filed

Publications:

Biz Dev Contact:
Brian Kelly
(646) 962-7041
bjk44@cornell.edu

Cornell Reference:
D-9146
Low-Dose Carbon Monoxide for Treatment of Metastatic Cancers

Technology Applications

- Neoadjuvant prophylactic treatment to prevent metastasis following a primary cancer diagnosis
- Adjuvant treatment to prevent metastasis or treat metastatic lesions
- Combination adjuvant treatment with additional therapeutic agents
- Treatment of idiopathic lung fibrosis

Technology Advantages

- Treatment is not cytotoxic and does not reduce activity of non-cancerous cells *in vitro*
- CO can be co-administered with current standard or care for a given cancer
- Effective against multiple cancers in reducing metastasis, metastatic burden, and tumor growth

Supporting Data / Figures

Figure 1: CO treatment in animal models reduces liver metastasis (a) and lung metastatic outgrowth (b) in PDAC (8988T) and TNBC (MDA-MB-231) *in vivo*

Inventors:
Nancy Du
Augustine Choi

Patents:
US Application Filed

Publications:

Biz Dev Contact:
Brian Kelly
(646) 962-7041
bjk44@cornell.edu

Cornell Reference:
D-9146
Low-Dose Carbon Monoxide for Treatment of Metastatic Cancers

<table>
<thead>
<tr>
<th>Supporting Data / Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>ER+ BC</td>
</tr>
<tr>
<td>Her2+ BC</td>
</tr>
<tr>
<td>TNBC</td>
</tr>
<tr>
<td>PDAC</td>
</tr>
<tr>
<td>Colon</td>
</tr>
<tr>
<td>Prostate</td>
</tr>
</tbody>
</table>

Figure 2: Low-dose CO reduces transwell migration of ER+, HER2+, and triple negative breast cancer (BC) as well as pancreatic (PDAC), colon and prostate cancer *in vitro*

Inventors:
Nancy Du
Augustine Choi

Patents:
US Application Filed

Publications:

Biz Dev Contact:
Brian Kelly
(646) 962-7041
bjk44@cornell.edu

Cornell Reference:
D-9146