

Epigenetic Modifying Agents Sensitize EBV+ Lymphomas to Immunotherapy

Lead Inventors:

Lisa Giulino Roth, M.D.

Associate Professor of Pediatrics, Weill Cornell Medical College Associate Professor of Pathology and Laboratory Medicine, Weill Cornell Medical College

Ethel Cesarman, M.D., Ph.D.

Professor of Pathology and Laboratory Medicine, Weill Cornell Medicine

Business Development Contact:

Brian Kelly Director, Technology Licensing (646) 962-7041 bjk44@cornell.edu

Epigenetic Modifying Agents Sensitize EBV+ Lymphomas to Immunotherapy

Background & Unmet Need

- The Epstein-Barr virus (EBV) is one of the most common human viruses and is associated with the development of a number of lymphomas, such as Burkitt's lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and Hodgkin's lymphoma
- EBV has a strong propensity to remain latent, and can be classified into different latency patterns based on expression of immunogenic EBV proteins
- Most EBV-driven lymphomas express the latency l program, in which the single EB nuclear antigen (EBNA1) is produced which allows tumors to evade immune responses
- A minority of EBV-driven lymphomas display the highly immunogenic latency II/II program, which is responsive to common immunotherapies
- **Unmet Need:** There is an urgent need for methods to transform EBV-driven lymphomas to make them more amenable to immunotherapy treatment

Technology Overview

- The Technology: Use of epigenetic modifying agents to convert treatment-resistant latency I lymphomas into immunotherapy-responsive latency II/III lymphomas
- The Discovery: A high throughput screen with follow-up tests was used to identify the hypomethylating agents decitabine and 5-azacytidine as potent inducers of immunogenic EBV proteins (Figure 1)
- Decitabine treatment of latency I BL cells *in vitro* sensitized them to lysis by EBV-specific cytotoxic Tcells (EBV-CTLs; Figure 2A)
- **PoC Data:** Decitabine treatment of mice with latency I BL xenografts followed by EBV-CTLs resulted in Tcells effectively targeting and inhibiting tumor growth (Figure 2B)
- Combination treatment method is applicable to additional modes of immunotherapy (e.g., CAR-T, checkpoint inhibitors)

Inventors:

Lisa Giulino Roth Ethel Cesarman

Patents: US Application Filed

Publications: Dalton et al. Blood. 2020.

Biz Dev Contact: Brian Kelly (646) 962-7041 bjk44@cornell.edu

Cornell Reference: D-9278

Epigenetic Modifying Agents Sensitize EBV+ Lymphomas to Immunotherapy

Technology Applications

- Treatment of EBV+ latency I lymphomas with a combination of epigenetic modifying agents and an immunotherapy (e.g., EBV-CTLs, CAR-T cells, and checkpoint inhibitors)
- Technology is also potentially useful for treating nasopharyngeal and gastric cancers

Technology Advantages

- Induction of immunogenic antigens by epigenetic modifying agents occurs at low doses and persists long after agent removal
- In addition to DCB and 5-Aza, the technology also provides a screening method for discovering additional molecules that alter EBV latency

Epigenetic Modifying Agents Sensitize EBV+ Lymphomas to Immunotherapy

