

Nanotherapy Targeting Metastatic Factor RHAMM Positive Tumors

Lead Inventors:

Nancy Du, Ph.D.

Associate Professor of Pathology and Laboratory Medicine, Weill Cornell Medical College

Ching Tung, Ph.D.

Alexander R. Margulis, M.D., Distinguished Professor in Radiology, Weill Cornell Medical College Professor of Chemistry in Obstetrics and Gynecology, Weill Cornell Medical College

Seung Koo Lee, Ph.D.

Assistant Professor of Cell Biology Research in Radiology, Weill Cornell Medical College

Business Development Contact:

Lukasz Kowalik Senior Licensing and Business Development Officer

(646) 962-7052 kowalik@cornell.edu

Nanotherapy Targeting Metastatic Factor RHAMM Positive Tumors

Background & Unmet Need

- Pancreatic neuroendocrine tumors (PNETs) often lead to incurable, metastatic cancer, with only a 15% five-year survival rate
- Approved therapies such as sunitinib (a multitargeted receptor tyrosine kinase inhibitor) and everolimus (an mTOR inhibitor) have advanced the standard of care for PNETs
- However, many patients eventually develop drug resistance and relapse, resulting in poor long-term survival
- Unmet Need: Novel targets and therapies for PNET treatment, particularly for patients who relapsed or refractory disease

Technology Overview

- **The Technology:** Nanoparticle-based methods and compositions for the treatment of RHAMM-positive cancers
- The Discovery: Identification of an isoform of Receptor for Hyaluronic Acid Mediated Motility (RHAMM^B) as being consistently upregulated in various high-grade tumors and metastases including PNETs
- The inventors designed gold nanoparticles (AuNP) that carry the pro-apoptotic peptide KLA and silencing RNA for Bcl-xL (siBcl-xL) to specifically target RHAMM^B+ PNETs
- PoC Data: The nanoparticles successfully targeted RHAMM^B+ PNETs and led to a significant reduction in tumor weight and volume during *in vivo* studies
- A synergistic killing effect was achieved with codelivery of siBcl-xL and KLA peptide compared to either agent alone

Inventors:

Nancy Du Ching-Hsuan Tung Seung Koo Lee Xiang Chen

Patents: PCT Application Filed

Publications: Chen et al. bioRxiv. 2021.

Biz Dev Contact: Lukasz Kowalik (646) 962-7052 kowalik@cornell.edu

Cornell Reference: D-9369

Nanotherapy Targeting Metastatic Factor RHAMM Positive Tumors

Technology Applications

- RHAMM^B-specific targeting and treatment of PNETs
- Treatment of other solid tumors with demonstrated RHAMM^B overexpression (e.g., breast, pancreatic, ovarian, endometrial, lung, prostate, colorectal)

Technology Advantages

- AuNPs have tunable size, are biocompatible, and have low cytotoxicity
- RHAMM^B-specific delivery targets tumors with minimal adverse effects to healthy cells
- Combinational therapy produces synergistic proapoptotic effects

Figure 1: *In vivo* therapeutic efficacy of RHAMM^B-targeting combinational nanocomplexes. Treatment with the nanocomplexes delivered a significant decrease in tumor volume and tumor weight compared to negative controls.

Inventors:

Nancy Du Ching-Hsuan Tung Seung Koo Lee Xiang Chen

Patents: PCT Application Filed

Publications: Chen et al. bioRxiv. 2021.

Biz Dev Contact: Lukasz Kowalik (646) 962-7052 kowalik@cornell.edu

Cornell Reference: D-9369

Weill Cornell Medicine