

Lead Inventors:

Simon Dunham, Ph.D.

Assistant Professor of Electrical Engineering in Radiology, Weill Cornell Medical College

Bobak Mosadegh, Ph.D.

Associate Professor of Biomedical Engineering in Radiology, Weill Cornell Medical College

Business Development Contact:

Donna J. Rounds Associate Director, Business Development and Licensing (646) 962-7044 djr296@cornell.edu

Background & Unmet Need

- Cardiac arrhythmias such as atrial fibrillation (A Fib) can be treated with radiofrequency catheter ablation
- Electroanatomical mapping is used to identify the cardiac circuits triggering arrhythmias ahead of the radiofrequency catheter ablation procedure
- Current electroanatomical mapping systems are limited due to rigid basket catheter designs which do not conform to complex atrial or ventricular anatomy
- Flexible electronics can accommodate repeated strain and conform to patient anatomy, making them ideal for use in anatomic sensors and actuators
- However, current production of flexible electronics relies on novel material formulations and production within clean rooms, which limit scalability
- **Unmet Need:** There is a need to develop flexible and scalable multielectrode arrays for electroanatomical mapping and sensing applications

Technology Overview

- **The Technology:** A method for scalable generation of soft robotic sensor arrays (SRSA) with the ability to conform to anatomical structures using a conventional laser cutting tool
- The inventors leverage the thermal masking principle to selectively remove insulation of electronic circuits, allowing for production of SRSAs with increased flexibility
- PoC Data: Postprocessing of flex-printed circuit boards (PCBs) using this method led to increased flexibility of SRSAs based on stress strain assessments
- SRSAs successfully mapped four 3D printed left cardiac atria with an average of 85-90% conformability between the sensors and atrial surface
- SRSAs maintained mechanical integrity based on the ability of the array to withstand 100 cycles of actuation without reduction of performance

Inventors:

Simon Dunham

- Bobak Mosadegh
- Varun Kashyap

Alexandre Caprio

Tejas Doshi

Patents:

US Application Filed EP Application Filed

Publications:

Lahcen et al. Micromachines (Basel). 2023.

Kashyap et al. Adv. Eng. Mater. 2021.

Kashyap et al. Science. 2020.

Biz Dev Contact: Donna J. Rounds (646) 962-7044 djr296@cornell.edu

Cornell Reference: D-9430

Technology Applications

- Production of soft robotic sensor arrays for use in electroanatomical mapping, such as cardiac mapping
- Large scale production of low-cost stretchable electronics such as those used in diagnostic implants, health monitors, and sensory skin for medical robotics

Technology Advantages

- Integrates soft robotics with flexible electronics to allow for unrivaled anatomical conformity
- Allows for excellent electronic stretchability without requiring novel materials
- This method can be readily applied to a wide variety of geometry actuator/sensor arrays
- Can easily scale to mass production at a low cost

Supporting Data / Figures Laser (b) (c) (e) Before post-processing After post-processing 40 30 (N) page 10 Strain = ~0.9% Strain = ~30% 10 20 30 40 50 Extension (mm)

Figure 1: Top: Schematic of use of thermal masking principle to selectively remove insulation of electronic circuit boards Bottom: Circuit boards demonstrate increased stretchability in stress-strain curves after post-processing.

Inventors: Simon Dunham Bobak Mosadegh Varun Kashyap Alexandre Caprio

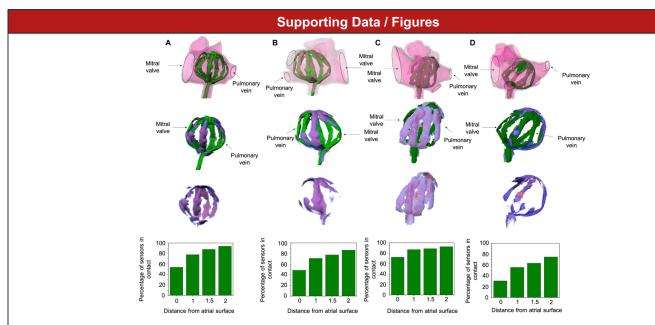
Tejas Doshi

Patents:

US Application Filed EP Application Filed

Publications:

Lahcen et al. Micromachines (Basel). 2023.


Kashyap et al. Adv. Eng. Mater. 2021.

Kashyap et al. Science. 2020.

Biz Dev Contact: Donna J. Rounds (646) 962-7044 djr296@cornell.edu

Cornell Reference: D-9430

Weill Cornell Medicine

Figure 2: The ability of soft robotic sensor arrays (SRSAs) to conform to atrial surface was assessed in 3D printed left atria of four patients (labeled A to D). The distance of the SRSAs from the atrial surface has been labeled with a colorimetric spectrum of red to blue for 0mm to 2mm, respectively. The percentage of sensors in contact with the atrial surface has been plotted at the bottom of each column.

