

NeuroVis: Mixed Reality System for Neurosurgery Case Planning

Scientific Co-Founders:

Susan C. Pannullo, M.D.

Robert G. Schwager, M.D. '67 Education Scholar, Neurological Surgery, Weill Cornell Medical College Associate Professor of Clinical Neurological Surgery, Weill Cornell Medical College

Swathi Chidambaram, M.D.

Former Radiosurgery Innovations Fellow, Weill Cornell Medical College MBA Candidate, Stanford University

Developed in collaboration with Politecnico di Milano, Catholic University (Rome), and Agostino Gemelli University Hospital

Business Development Contact:

Donna J. Rounds Associate Director, Business Development and Licensing (646) 962-7044 djr296@cornell.edu

NeuroVis: Mixed Reality System for Neurosurgery Case Planning

Background & Unmet Need

- Radiosurgery, or stereotactic surgery, is a noninvasive technique in which focused radiation beams are delivered into the body for treatment of tumors or other abnormalities
- Stereotactic surgery does not require any incisions, and instead uses high resolution, 2D brain scans to target the radiation
- Targeting radiation to minimize damage to surrounding tissues requires a multidisciplinary team
- During radiosurgery case planning, team members must mentally convert complex neural anatomy from 2D brain scans to 3D abstraction
- The ability of team members to do this conversion varies, and current commercially available radiosurgery software allows simulated 3D projections only
- Unmet Need: Precise and anatomical 3D visualization of neural anatomy for surgical case planning and guidance

Technology Overview

- The Technology: A system for visualization of neural anatomy which uses augmented reality to render 3D images of scans
- Volumes of neural structures are obtained by CT/MRI and are processed to build a holographic model resembling the intracranial structures
- A computer program precisely renders the anatomy and allows the user to reconstruct regions of interest, which is projected via a Microsoft HoloLens headset
- **PoC Data:** Interactive models of neuro-oncologic scenarios have been created, which have demonstrated 3D identification of the following structures:
 - Intercranial metastases
 - Resection cavity with metastasis
 - Intraventricular lesion

Inventors:

Swathi Chidambaram Susan C Pannullo Alessandro Olivi Maria Chiara Palumbo Alberto Redaelli Vito Stifano

Patents: US Application Filed

Publications: Chidambaram et al. JMIR Neurotech. 2022.

Biz Dev Contact: Donna J. Rounds (646) 962-7044 djr296@cornell.edu

Cornell Reference: D-9511

NeuroVis: Mixed Reality System for Neurosurgery Case Planning

Technology Applications

- Enhances radiosurgery case planning discussions and allows for practicing in simulations
- Detection of tumors, lesions, and cysts on key organs
- Reconstruction of organs for root-cause analysis of medical conditions
- Use in medical education to study highly variable conditions

Technology Advantages

- Offers 3D views and cross-sectioning capabilities, whereas current imaging technologies only offer views in 2D
- Allows for real-time interaction with the patient's model, such as moving the model around, hiding structures, fading structures, and layering with 2D imaging
- Compatible with off-the-shelf VR hardware

Supporting Data / Figures

Figure 1: NeuroVis holograms for a patient undergoing stereotactic radiosurgery planning for treatment of a resection cavity with metastasis (A-C) and for a patient with multiple intracranial metastases (D-F).

Inventors: Swathi Chidambaram Susan C Pannullo Alessandro Olivi Maria Chiara Palumbo Alberto Redaelli Vito Stifano

Patents: US Application Filed

Publications: Chidambaram et al. JMIR Neurotech. 2022.

Biz Dev Contact: Donna J. Rounds (646) 962-7044 djr296@cornell.edu

Cornell Reference: D-9511

Weill Cornell Medicine

Weill Cornell Medicine