

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Malaria

Lead Inventors:

Gang Lin, Ph.D.

Associate Professor of Research in Microbiology and Immunology, Weill Cornell Medical College

Carl F. Nathan, M.D.

Professor of Medicine, Weill Cornell Medical College Chairman of Microbiology and Immunology, Weill Cornell Medical College Dean, Weill Cornell Graduate School of Medical Sciences

Laura Kirkman, M.D.

Associate Professor of Medicine, Weill Cornell Medical College

Business Development Contact:

Jamie Brisbois Manager, Business Development and Licensing (646) 962-7049 jamie.brisbois@cornell.edu

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Malaria

Background & Unmet Need

- With over 200 M cases annually and 500 K deaths, mostly in children, malaria remains a persistent global health crisis
- *Plasmodium falciparum (Pf)* has developed resistance to all currently available antimalarials, including the artemisinins (ARTs), a key therapy
- ART is a pro-drug converted to radicals within the parasites, causing oxidative damage that overload the parasites' ubiquitin-proteasome degradation system (UPS)
- However, ART resistance is spreading in Southeast Asia and has also been reported in Africa •
- **Unmet Need:** Novel antimalarials as components of combination therapy to prevent further dissemination of ART resistance

Technology Overview

- **The Technology:** ART and Pf20S inhibitor hybrids (Artezomibs, ATZs) as dual mechanism therapies for the treatment of wild type and resistant Pf strains
- The inventors first demonstrated that conjugation of an ART moiety to a proteasome inhibitor did not interfere with the binding and inhibition of Pf20S
- The inventors then designed four new ATZs, in which the artesunate analog WZ-1840 is conjugated to a proteasome inhibitor via a propionate linker
- **PoC Data:** In growth inhibition assays of Pf Dd2 and two proteasome inhibitor-resistant strains, the ATZs substantially overcame resistance to the proteasome inhibitor moiety alone conferred by Pf20s point mutations
- The ATZs demonstrated ~5x improvement for Dd2 mutant β6A117D and ~100x improvement for Dd2 mutant β5A49S compared to the proteasome inhibitor WZ-1839 alone

Inventors: Gang Lin

Carl F. Nathan Laura Kirkman Wenhu Zhan

Hao Zhang

Patents:

PCT Application Filed US Application Filed EP Application Filed

Publications:

Zhan et al. Cell Chem Biol. 2023.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9516

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Malaria

Technology Applications

- · Treatment and prevention of malaria infection
- Combination therapy to overcome ART resistance
- Strategy for the direct conjugation of other compound with anti-malarial activity

Technology Advantages

- Conjugate approach combines two MOAs in a single compound (artemisinins and proteasome inhibitors)
- Overcomes Pf treatment resistance to individual therapies
- · Therapeutic activity of each moiety is preserved

Inventors: Gang Lin Carl F. Nathan Laura Kirkman Wenhu Zhan Hao Zhang

Patents:

PCT Application Filed US Application Filed EP Application Filed

Publications:

Zhan et al. Cell Chem Biol. 2023.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9516

