

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Multiple Myeloma

Lead Inventors:

Gang Lin, Ph.D.

Associate Professor of Research in Microbiology and Immunology, Weill Cornell Medical College

Carl F. Nathan, M.D.

Professor of Medicine, Weill Cornell Medical College Chairman of Microbiology and Immunology, Weill Cornell Medical College Dean, Weill Cornell Graduate School of Medical Sciences

Laura Kirkman, M.D.

Associate Professor of Medicine, Weill Cornell Medical College

Business Development Contact:

Jamie Brisbois Manager, Business Development and Licensing (646) 962-7049 jamie.brisbois@cornell.edu

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Multiple Myeloma

Background & Unmet Need

- Worldwide, there are ~86 K new multiple myeloma (MM) patients and ~63 K related deaths each year
- Proteasome inhibitor drugs are standard of care for the treatment of MM, but only have a response rate of ~25% when used as single agents
- Almost all MM patients using proteasome inhibitor treatment will relapse due to a variety of resistance pathways, including mutations in the proteasome subunit 19S
- Artemisinin and its analogues are clinically used to treat Malaria, but may also be promising cancer therapeutics as they demonstrate potent antineoplastic activity
- Unmet Need: Improved proteasome inhibitors for multiple myeloma and other cancers which overcome resistance mechanisms

Technology Overview

- **The Technology:** Artemisinin and proteasome inhibitor hybrids (Artezomibs, ATZs) for treatment of human cancers, including multiple myeloma
- The inventors have designed a series of Artezomibs, wherein Artemisinin analog *Artesunate* is conjugated to a proteasome inhibitor via a linker
- Artemisinin is known to cause degradation of Ferritin, which may in turn cause Ferroptosis, an iron-dependent programed cell death
- The longer, peptide-based proteasome inhibitors may overcome the resistance conferred via the mutations in proteasome subunits
- **PoC Data:** Proteasome inhibition assays demonstrated inhibitory activity of the Artezomibs against a variety of proteasome subunits
- Artezomibs demonstrated cytotoxicity against a panel of multiple myeloma cell lines, including MM.1S, CAG, and RPMI8226

Inventors: Gang Lin Carl F. Nathan Laura Kirkman Wenhu Zhan

Hao Zhang

Patents:

PCT Application Filed US Application Filed EP Application Filed

Publications:

Zhan et al. Cell Chem Biol. 2023.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9516

Artemisinin-Proteasome Inhibitor Conjugates for the Treatment of Multiple Myeloma

Technology Applications

- Treatment of multiple myeloma, either alone or in combination with other proteasome inhibitors
- Therapeutic for other cancers susceptible to
 proteasome inhibition, such as pancreatic, head and
 neck cancer, and non small cell lung carcinoma

Technology Advantages

- Artezomibs can be tailored to inhibit one or more proteasome subunits
- Artezomibs show high potency in vitro
- · Therapeutic activity of each moiety is preserved

Figure 1: Artezomib induces apoptosis in multiple myeloma cells. Top: Treatment with HZ2083 increased Caspase-3/7 activity (associated with apoptosis) in an MM cell line comparable to clinically available proteasome inhibitor drugs. Bottom: Treatment with HZ2083 increased apoptosis-associated factors such as cleaved PARP, Chop, and p21.

Inventors: Gang Lin Carl F. Nathan Laura Kirkman Wenhu Zhan Hao Zhang Patents: PCT Application Filed **US** Application Filed **EP** Application Filed **Publications:** Zhan et al. Cell Chem Biol. 2023. Biz Dev Contact: Jamie Brisbois

Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9516

Weill Cornell Medicine

