Flexible and Stretchable Radiofrequency Coils for Improved Magnetic Resonance Imaging

Lead Inventors:

Elizaveta Motovilova, Ph.D.
Postdoctoral Associate in Radiology, Radiology, Weill Cornell Medical College

Simone A. Winkler, Ph.D.
Assistant Professor of Electrical Engineering in Radiology, Radiology, Weill Cornell Medical College

Business Development Contact:
Louise Sarup
Interim Technology Licensing Officer
(646) 962-3523
lss248@cornell.edu
Flexible and Stretchable Radiofrequency Coils for Improved Magnetic Resonance Imaging

<table>
<thead>
<tr>
<th>Background & Unmet Need</th>
<th>Technology Overview</th>
<th>Inventors:</th>
<th>Patents:</th>
<th>Publications:</th>
<th>Biz Dev Contact:</th>
<th>Cornell Reference:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• MRI uses radiofrequency (RF) coils to obtain images of internal anatomy</td>
<td>• The Technology: The inventors have developed a stretchable and autotuning RF coil array for MRI</td>
<td>Eliza Motovilova</td>
<td>PCT Application Filed</td>
<td>Motovilova et al. Sci Rep. 2021.</td>
<td>Louise Sarup (646) 962-3523 lss248@cornell.edu</td>
<td>D-9669</td>
</tr>
<tr>
<td>• Current MRI techniques use rigid RF coil arrays to accommodate a wide range of patient anatomies</td>
<td>• In this RF coil, liquid metal is embedded in a soft polymer, which allows it to conform to a variety of patient shapes</td>
<td>Simone A. Winkler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Arrays that better conform to the anatomy of interest yield better signal-to-noise ratio (SNR)</td>
<td>• The design of the proposed coil includes a stretchable interdigital capacitor, which reduces resonance frequency shift with stretching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• While newer, flexible RF designs improve this volume issue, full SNR optimization requires that RF coils be stretchable</td>
<td>• PoC Data: In bench measurements, the proposed coil had a frequency shift of only 0.4% at 27% stretch, compared to the control coil at 4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Current efforts for stretchable RF coils suffer from detuning during stretching or require outside circuitry to retune coils</td>
<td>• In vivo, the proposed coil showed a 60% SNR increase compared to a dedicated knee coil array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Unmet Need: RF coils which are both stretchable and flexible to conform to patient anatomy and are automatically tunable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Weill Cornell Medicine logo](logo.jpg)
Flexible and Stretchable Radiofrequency Coils for Improved Magnetic Resonance Imaging

Technology Applications

- General MR imaging with increased resolution
- More effective MRI for challenging anatomies
- Wearable MRI technology

Technology Advantages

- Design provides higher SNR for better imaging
- Flexible and stretchable design can be worn by patient and conform to a variety of anatomies
- Coils are autotuning, so there is no need for external tuning circuits or equipment

Inventors:
Eliza Motovilova
Simone A. Winkler

Patents:
PCT Application Filed

Publications:

Biz Dev Contact:
Louise Sarup
(646) 962-3523
lss248@cornell.edu

Cornell Reference:
D-9669

Supporting Data / Figures

Figure 1: Top: Schematic of RF coil in stretchable polymer Bottom: Experimental and simulated change in resonance frequency with stretching is reduced in proposed design.
Flexible and Stretchable Radiofrequency Coils for Improved Magnetic Resonance Imaging

Supporting Data / Figures

Figure 2: Prototype of proposed RF coil shows higher SNR compared to a commercial knee coil array.