

Whole Cell Active Inhibitors of Mycobacterium Tuberculosis Lipoamide Dehydrogenase

Lead Inventors:

Ruslana U. Bryk, Ph.D.

Associate Professor of Research in Microbiology and Immunology, Weill Cornell Medical College

Carl F. Nathan, M.D.

Professor of Medicine, Weill Cornell Medical College Chairman of Microbiology and Immunology, Weill Cornell Medical College Dean, Weill Cornell Graduate School of Medical Sciences

Business Development Contact:

Jamie Brisbois

Business Development & Licensing Senior Associate

(646) 962-7049 jamie.brisbois@cornell.edu

Whole Cell Active Inhibitors of Mycobacterium Tuberculosis Lipoamide Dehydrogenase

Background & Unmet Need

- Tuberculosis (TB) infected 10 M and killed 1.5 M people in 2018, and remains a worldwide health crisis due to rising drug resistance
- The BPaL regimen (bedaquiline, pretomanid, and linezolid) received FDA approval in 2019 and is the first regimen in decades to feature novel MOAs
- However, there is a need to develop additional inhibitor classes to novel targets, to sustain the TB drug pipeline and shorten and diversify drug regimens
- Lipoamide dehydrogenase (Lpd) is a promising therapeutic target but has yet to be chemically validated
- Mtb lacking Lpd fails to grow on carbohydrates as a sole carbon source and connect establish TB infection in mice
- Unmet Need: Novel classes of Mtb inhibitors targeted unexplored targets such as Lpd

Technology Overview

- **The Technology:** Improved sulfonamide-based Lpd inhibitors that exhibit acceptable Mtb permeability and phenocopy *lpd* genetic deletion *in vitro*
- Through an extensive structure-activity relationship (SAR) campaign, compound 13 emerged as the lead candidate with the lowest minimum inhibitory concentration (MIC) and highest pyruvate fold increase
- Compound **13** was shown to be a potent, timedependent, slowly dissociating inhibitor of Mtb Lpd
- PoC Data: Compound 13 selectively kills Mtb under nitrosative stress and inhibits the growth of Mtb inside mouse bone marrow-derived macrophages (BMDM)
- NB: Compound 13 not tested for efficacy in TB mouse model due to high susceptibility to mouse microsomal metabolism
- Development of next-generation analogs is ongoing

Inventors:

Ruslana U. Bryk Carl F. Nathan

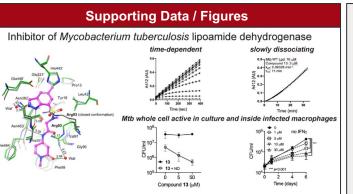
Developed in collaboration with the Tri-I TDI

Patents: PCT Application Filed

Publications: Ginn et al. ACS Infect Dis. 2021.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9678


Whole Cell Active Inhibitors of Mycobacterium Tuberculosis Lipoamide Dehydrogenase

Technology Applications

- · Treatment and prevention of Mtb infection
- Inclusion in combination regimens to combat Mtb resistance

Technology Advantages

- Highly selective for mycobacterial Lpd over the human enzyme, reducing risk of off-target effects
- Compound 13 is a slowly-dissociating inhibitor of Mtb Lpd
- No toxicity to mouse bone marrow-derived macrophages (BMDM) and HEPG2 cells was observed below 100µM

Figure 1: Compound **13** is a potent, time-dependent slowly dissociating inhibitor of Mtb Lpd. Compound **13** selectively kills Mtb under nitrosative stress and inhibits the growth of Mtb inside mouse bone marrow-derived macrophages (BMDM).

The Tri-I TDI has produced an extensive preclinical data package that is available under CDA

Inventors: Ruslana U. Bryk Carl F. Nathan

Developed in collaboration with the Tri-I TDI

Patents:

PCT Application Filed

Publications: Ginn et al. ACS Infect Dis. 2021.

Biz Dev Contact: Jamie Brisbois (646) 962-7049 jamie.brisbois@cornell.edu

Cornell Reference: D-9678

Weill Cornell Medicine