Small Molecule Inhibitors of Lipofuscin Toxicity to Prevent Blindness

Lead Inventor:

Marcelo M. Nociari, Ph.D.
Assistant Professor of Immunology in Ophthalmology,
Weill Cornell Medical College

Business Development Contact:
Donna J. Rounds
Interim Senior Technology Licensing Officer
(646) 962-7044
djr296@cornell.edu
Small Molecule Inhibitors of Lipofuscin Toxicity to Prevent Blindness

Background & Unmet Need
- Lipofuscin is a variable mixture of proteins and lipids that accumulates in lysosomes of many cell types, with age or due to genetic mutations.
- Lipofuscin is a universal marker of aging but is also a risk factor in pathologic processes, including the most common forms of macular degeneration.
- Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), where it interferes with the support of the neuroretina.
- Retinal lipofuscin is directly linked to RPE cell death in Stargardt disease, but the role in age-related macular degeneration (AMD) is unclear.
- Ongoing clinical trials to treat lipofuscin-associated pathologies target the formation of lipofuscin, and therefore do not treat established deposits.
- **Unmet Need:** Improved understanding of lipofuscin toxicity is necessary to inform the development of novel therapeutic strategies to prevent blindness.

Technology Overview
- **The Technology:** Identification of compounds that protect the retina against lipofuscin toxicity.
- **The Discovery:** Lipofuscin promotes retinal degeneration via a light-independent atypical necroptotic cascade.
- Lipofuscin was shown to form aggregates in lysosomes, triggering lysosomal membrane permeabilization (LMP) and subsequent atypical necroptosis.
- Necrosulfonamide, necrostatin-7, and arimoclomol were all shown to effectively block lipofuscin toxicity, by targeting different steps in the necroptotic cascade.
- **PoC Data:** The identified compounds successfully protected against cell death induced by A2E accumulation and LMP induced by the lysosomotropic peptide LLOMe.

Inventors:
Marcelo M. Nociari

Patents:
PCT Application Filed

Publications:
Pan et al. PNAS. 2021.

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-9568
D-9745
Small Molecule Inhibitors of Lipofuscin Toxicity to Prevent Blindness

Technology Applications

- Treatment of genetic and age-related causes of macular degeneration (e.g., Stargardt disease, Age-related macular degeneration (AMD))

Technology Advantages

- Protects against further damage to the retina by lipofuscin
- Applicable to multiple causes of blindness
- Arimoclomol is already in clinical trials for separate indications, which may enable an accelerated development pathway for ophthalmic diseases

Supporting Data / Figures

Figure 1: Working model for the light-independent cytotoxicity elicited by the accumulation of lipofuscin. Arimoclomol, necrostatin-7, and necrosulfonamide all were shown to block the necroptotic cascade.
Small Molecule Inhibitors of Lipofuscin Toxicity to Prevent Blindness

<table>
<thead>
<tr>
<th>Supporting Data / Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2: Arimocollol and necrostatin-7 block atypical necroptosis induced by A2E and LLOMe and therefore promote survival to retinal lipofuscin accumulation in cultured RPE cells.</td>
</tr>
<tr>
<td>Figure 3: Single intra-ocular injection of arimoclomol reduces necroptosis (red) in the RPE (nucleus blue) of an animal model of Stargardt disease, restoring the healthy appearance of the retina.</td>
</tr>
</tbody>
</table>

Inventors:
Marcelo M. Nociari

Patents:
PCT Application Filed

Publications:
Pan et al. PNAS. 2021.

Biz Dev Contact:
Donna Rounds
(646) 962-7044
djr296@cornell.edu

Cornell Reference:
D-9568
D-9745