

Lead Investigator:

Steve (Xiaofeng) Huang, Ph.D.

Assistant Professor of Molecular Biology Research in Medicine, Medicine, Weill Cornell Medical College

Business Development Contact:

Louise Sarup

Associate Director, Business Development and Licensing

(646) 962-3523

lss248@cornell.edu

Background & Unmet Need

- Short bowel syndrome (SBS) results from surgical resection or congenital disease of the small intestine, and leads to an inability to absorb sufficient nutrients
- Over time, the remaining small bowel and colon undergo structural and functional changes to increase nutrient absorption, but ~50% of patients will require long-term total parenteral nutrition (TPN)
- Teduglutide (GLP-2 agonist) is the only FDAapproved therapy for SBS patients who are dependent on TPN
- While teduglutide led to a significant reduction in TPN frequency, only 11% of patients were completely weaned from TPN
- Unmet Need: Novel treatments for SBS patients that reduce the need for TPN and improve the ability of the remaining small bowel / colon to absorb nutrients

Technology Overview

- The Technology: Inhibition of SATB2 as a therapeutic strategy for the treatment of SBS, exemplified using CRISPR gene therapy
- The Discovery: Loss of the transcription factor SATB2 transforms colonic epithelium into ileum-like tissue in mice and human colonic organoids
- Intestinal deletion of SATB2 in mice led to significant remodeling of colonic tissue, with marked changes in tissue morphology, gene expression, and cell type composition
- PoC Data: Of note, SATB2 inhibition led to the generation of bona fide nutrient-absorbing enterocytes, with significantly enhanced nutrient absorption in Satb2^{cKO} mice colon compared to negative control
- CRISPR-mediated deletion of SATB2 using an optimized guide RNA (gRNA) replicated the findings observed in mice, suggesting a potential therapeutic strategy for SBS patients

Inventors:

Joe Zhou

Patents:

US Application Filed

Publications:

Gu et al. Cell Stem Cell. 2022

Gu et al. Nat Commun. 2024

Biz Dev Contact:

Louise Sarup (646) 962-3523 lss248@cornell.edu

Cornell Reference:

D-9894

Technology Applications

- SATB2-targeting CRISPR gene therapy using unique gRNA to restore small bowel function in SBS patients
- Cell therapy in which colonic stem cells are harvested from the patient, modified to disrupt the SATB2 gene, and then reimplanted into patients
- Gut-targeting siRNA therapy that reduces SATB2 expression

Technology Advantages

- Inhibition of SATB2 leads to durable gut remodeling that may reduce or eliminate the need for TPN
- SATB2 inhibition may be achieved through a variety of therapeutic approaches
- A single course of treatment may be sufficient to achieve lasting results

Supporting Data / Figures Wild Type Colon SATB2-null Colon **Nutrients** Enterocytes **Nutrients** Colonocytes EEC Paneth Cell **OLFM4- Stem Cell** OLFM4+ Stem Cell

Figure 1: Loss of the transcription factor SATB2 leads to the downregulation of colonic genes and the upregulation of ileal, genes, transforming colonic tissue into ileum-like tissue that absorbs key nutrients.

Inventors:

Joe Zhou

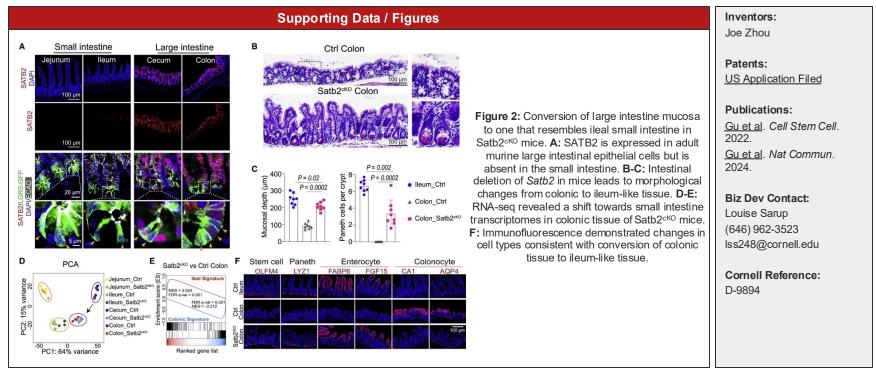
Patents:

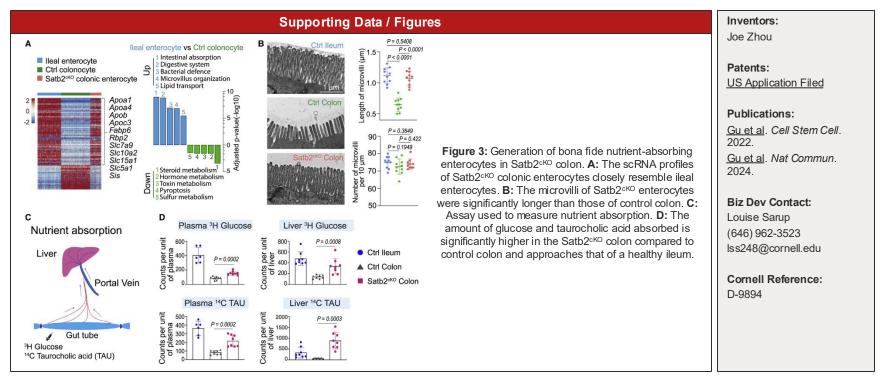
US Application Filed

Publications:

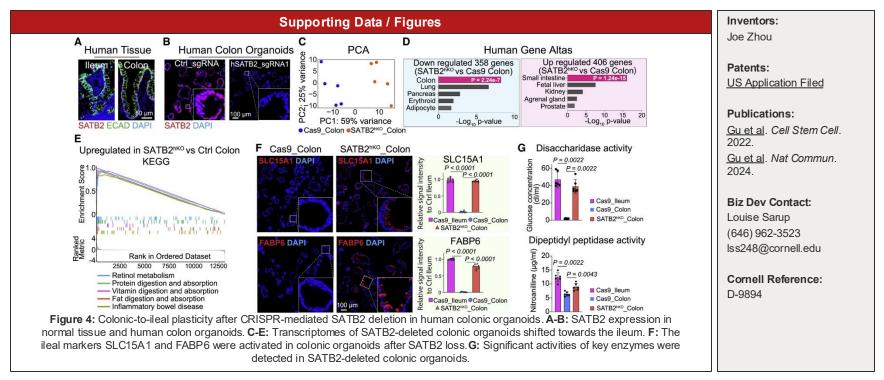
Gu et al. Cell Stem Cell. 2022

Gu et al. Nat Commun. 2024


Biz Dev Contact:


Louise Sarup (646) 962-3523 Iss248@cornell.edu

Cornell Reference:


D-9894

Weill Cornell Medicine