

Lead Inventor:

Dan Landau, M.D., Ph.D.

Associate Professor of Medicine, Weill Cornell Medical College Associate Professor of Physiology and Biophysics, Weill Cornell Medical College Core Member, New York Genome Center

Business Development Contact:

Brian Kelly Director, Technology Licensing

(646) 962-7041 bjk44@cornell.edu

Background & Unmet Need

- Somatic mutations drive cancer initiation and progression and are linked to hematopoiesis-related cardiovascular diseases, such as atherosclerosis
- Specific impact of mutations on human biology and their role in disease remain poorly understood
- Mutant cell populations often lack distinguishing cell surface features, making it challenging to identify, isolate and study them on a single cell basis
- High-throughput droplet-based approaches rely on RNA sequencing and are therefore limited by target expression levels and genomic locus of the mutation, while genomic DNA-based methods suffer from low throughput
- **Unmet Need:** High-throughput genotyping methods to better understand the impact of somatic mutations on gene regulation across various contexts, including in patient samples

Technology Overview

- The Technology: GoTChA (<u>G</u>enotyping <u>of</u> <u>T</u>argeted loci with <u>Ch</u>romatin <u>A</u>ccessibility) is a novel highthroughput method of single-cell genotyping from genomic DNA
- GoTChA allows identification of mutant and wild type cells at the single cell resolution, independently of gene expression and genomic position
- The comprehensive processing pipeline applies noise correction and provides accurate genotyping integrated with chromatin accessibility information
- GoTChA is compatible with other single cell technologies such as mtscATAC-seq for mitochondrial DNA genotyping and ASAP-seq for multiomic protein measurements
- PoC Data: In a PoC study, GoTChA genotyped 50– 60% of cells for TP53 or JAK2 mutations with >96% accuracy
- GoTChA was also utilized to probe the therapeutic effect of ruxolitinib at the single-cell level

Inventors:

Dan Landau Robert Myers Franco Izzo Ronan Chaligné

Patents: PCT Application Filed

Publications: <u>Myers et al</u>. *Blood.* 2021. (Abstract) Myers et al. *bioRxiv.* 2022.

Biz Dev Contact: Brian Kelly (646) 962-7041 bjk44@cornell.edu

Cornell Reference: D-9978

Technology Applications

- Study the impact of mutations on gene regulation in various contexts in human biology and disease
- Compare chromatin accessibility in mutated and wild type cells, potentially informing therapy decisions
- Can be combined with mtscATAC-seq for mitochondrial DNA genotyping and ASAP-seq for multiomic protein measurements

Technology Advantages

- High-throughput simultaneous ATAC-seq and genotyping within the same sequencing run
- Stable and consistent results due to novel noise correction and independence of target expression and genomic location
- User-friendly pipeline that processes data from raw reads to final genotyping calls and integration with ATAC-seq for individual cells

Inventors: Dan Landau Robert Myers Franco Izzo Ronan Chaligné Patents: PCT Application Filed Publications: Myers et al. Blood. 2021. (Abstract) Myers et al. bioRxiv. 2022. **Biz Dev Contact:** Brian Kelly (646) 962-7041 bjk44@cornell.edu

Cornell Reference: D-9978

Weill Cornell Medicine

Weill Cornell Medicine